
-
Previous Article
Two-level optimization approach with accelerated proximal gradient for objective measures in sparse speech reconstruction
- JIMO Home
- This Issue
-
Next Article
Investigating a green supply chain with product recycling under retailer's fairness behavior
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Projection method with inertial step for nonlinear equations: Application to signal recovery
1. | KMUTTFixed Point Research Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand |
2. | Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand |
3. | Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan |
4. | School of Mathematics and Statistics, Zaozhuang University, Shandong 277160, China |
5. | School of Management, Qufu Normal University, Shandong 276826, China |
6. | NCAO Research Center, Fixed Point Theory and Applications Research Group, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand |
7. | Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano. Kano, Nigeria, Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, Medunsa-0204, South Africa |
In this paper, using the concept of inertial extrapolation, we introduce a globally convergent inertial extrapolation method for solving nonlinear equations with convex constraints for which the underlying mapping is monotone and Lipschitz continuous. The method can be viewed as a combination of the efficient three-term derivative-free method of Gao and He [Calcolo. 55(4), 1-17, 2018] with the inertial extrapolation step. Moreover, the algorithm is designed such that at every iteration, the method is free from derivative evaluations. Under standard assumptions, we establish the global convergence results for the proposed method. Numerical implementations illustrate the performance and advantage of this new method. Moreover, we also extend this method to solve the LASSO problems to decode a sparse signal in compressive sensing. Performance comparisons illustrate the effectiveness and competitiveness of our algorithm.
References:
[1] |
A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad and C. Tammer,
A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Appl. Anal. Optim., 4 (2020), 1-24.
|
[2] |
A. B. Abubakar and P. Kumam,
A descent Dai-Liao conjugate gradient method for nonlinear equations, Numerical Algorithms, 81 (2019), 197-210.
doi: 10.1007/s11075-018-0541-z. |
[3] |
A. B. Abubakar and P. Kumam,
An improved three-term derivative-free method for solving nonlinear equations, Comput. Appl. Math., 37 (2018), 6760-6773.
doi: 10.1007/s40314-018-0712-5. |
[4] |
A. B. Abubakar, P. Kumam and A. H. Ibrahim, Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations with Convex Constraints, IEEE Access. 2021. |
[5] |
J. Abubakar, P. Kumam, A. H. Ibrahim and et al.,
Inertial iterative schemes with variable step sizes for variational inequality problem involving pseudomonotone operator, Mathematics, 8 (2020), 609.
|
[6] |
A. B. Abubakar, P. Kumam, A. H. Ibrahim, P. Chaipunya and S. A. Rano, New Hybrid Three-Term Spectral-Conjugate Gradient Method for Finding Solutions of Nonlinear Monotone Operator Equations with Applications, Mathematics and Computers in Simulation, 2021. |
[7] |
A. B. Abubakar, P. Kumam, A. H. Ibrahim and J. Rilwan, Derivative-free HS-DY-type method for solving nonlinear equations and image restoration, Heliyon, 6 (2020), e05400. |
[8] |
A. B. Abubakar, P. Kumam and H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39 (2020), Paper No. 129, 35 pp.
doi: 10.1007/s40314-020-01151-5. |
[9] |
A. B. Abubakar, P. Kumam, H. Mohammad and A. H. Ibrahim,
PRP-like algorithm for monotone operator equations, Jpn. J. Ind. Appl. Math., 38 (2021), 805-822.
doi: 10.1007/s13160-021-00462-2. |
[10] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, J. Abubakar and S. A. Rano,
FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations, Arab. J. Math. (Springer), 10 (2021), 261-270.
doi: 10.1007/s40065-021-00313-5. |
[11] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, S. E. Fadugba, K. O. Aremu and L. O. Jolaoso, A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations, J. Math., 2021 (2021), Art. ID 5549878, 9 pp.
doi: 10.1155/2021/5549878. |
[12] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, A. B. Muhammad, L. O. Jolaoso and K. O. Aremu,
A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration, IEEE Access, 9 (2021), 18262-18277.
|
[13] |
A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim and and I. Ahmed,
Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints, Thai J. Math., 18 (2020), 501-517.
|
[14] |
J. Abubakar, P. Kumam, A. H. Ibrahim and A. Padcharoen,
Relaxed inertial Tseng's type method for solving the inclusion problem with application to image restoration, Mathematics, 8 (2020), 818.
|
[15] |
J. Abubakar, K. Sombut, H. ur Rehman, A. H. Ibrahim and et al.,
An accelerated subgradient extragradient algorithm for strongly pseudomonotone variational inequality problems, Thai J. Math., 18 (2020), 166-187.
|
[16] |
W. Aj and B. Wollenberg, Power Generation, Operation and Control, New York: John Wiley & Sons. 1996,592. |
[17] |
F. Alvarez and H. Attouch,
An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3-11.
doi: 10.1023/A:1011253113155. |
[18] |
H. Attouch, J. Peypouquet and P. Redont,
A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), 232-256.
doi: 10.1137/130910294. |
[19] |
A. Auslender, M. Teboulle and S. Ben-Tiba,
A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., 12 (1999), 31-40.
doi: 10.1023/A:1008607511915. |
[20] |
A. B. Abubakar, P. Kumam, M. Malik, P. Chaipunya and A. H. Ibrahim,
A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection, AIMS Math., 6 (2021), 6506-6527.
doi: 10.3934/math.2021383. |
[21] |
A. B. Abubakar, P. Kumam, M. Malik and A. H. Ibrahim, A Hybrid Conjugate Gradient Based Approach for Solving Unconstrained Optimization and Motion Control Problems., Mathematics and Computers in Simulation, 2021. |
[22] |
R. I. Boţ and E. R. Csetnek,
An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algorithms, 71 (2016), 519-540.
doi: 10.1007/s11075-015-0007-5. |
[23] |
R. I. Boţ and E. R. Csetnek,
A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 36 (2015), 951-963.
doi: 10.1080/01630563.2015.1042113. |
[24] |
R. I. Boţ, E. R. Csetnek and C. Hendrich,
Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput., 256 (2015), 472-487.
doi: 10.1016/j.amc.2015.01.017. |
[25] |
C. Chen, R. H. Chan, S. Ma and J. Yang,
Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8 (2015), 2239-2267.
doi: 10.1137/15100463X. |
[26] |
P. Chuasuk, F. Ogbuisi, Y. Shehu and P. Cholamjiak, New inertial method for generalized split variational inclusion problems, Journal of Industrial & Management Optimization, (2020). |
[27] |
J. E. Dennis Jr. and J. J. Moré,
A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1. |
[28] |
J. E. Dennis Jr. and J. J. Moré,
Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46-89.
doi: 10.1137/1019005. |
[29] |
J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM; 1996.
doi: 10.1137/1.9781611971200. |
[30] |
S. P. Dirkse and M. C. Ferris,
MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.
|
[31] |
E. D. Dolan and J. J. Moré,
Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[32] |
Q. L. Dong, Y. J. Cho, L. L. Zhong and Th. M. Rassias,
Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., 70 (2018), 687-704.
doi: 10.1007/s10898-017-0506-0. |
[33] |
M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Science & Business Media; 2010.
doi: 10.1007/978-1-4419-7011-4. |
[34] |
M. A. Figueiredo, R. D. Nowak and S. J. Wright,
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 586-597.
|
[35] |
P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55 (2018), Paper No. 53, 17 pp.
doi: 10.1007/s10092-018-0291-2. |
[36] |
A. H. Ibrahim, J. Deepho, A. B. Abubakar and A. Adamu, A three-term Polak-Ribiére-Polyak derivative-free method and its application to image restoration, Scientific African, 13 (2021), e00880. Available from: https://www.sciencedirect.com/science/article/pii/S2468227621001848. |
[37] |
A. H. Ibrahim, J. Deepho, A. B. Abubakar and K. O. Aremu, A Modified Liu-Storey-Conjugate Descent Hybrid Projection Method for Convex Constrained Nonlinear Equations and Image Restoration, Numerical Algebra, Control & Optimization, 2021. |
[38] |
A. H. Ibrahim, G. A. Isa, H. Usman, J. Abubakar and A. B. Abubakar,
Derivative-free RMIL conjugate gradient method for convex constrained equations, Thai J. Math., 18 (2019), 212-232.
|
[39] |
A. H. Ibrahim and P. Kumam, Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints, Ain Shams Engineering Journal, (2021). |
[40] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, J. Abubakar and A. B. Muhammad,
Least-square-based three-term conjugate gradient projection method for $\ell_1$-norm problems with application to compressed sensing, Mathematics, 8 (2020), 602.
|
[41] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. Batsari Yusuf, S. E. Yimer and K. O. Aremu,
An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration, AIMS Math., 6 (2021), 235-260.
doi: 10.3934/math.2021016. |
[42] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat and J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon, 6 (2020), e03466. |
[43] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf and J. Rilwan,
Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery, J. Nonlinear Convex Anal., 21 (2020), 1959-1972.
|
[44] |
A. H. Ibrahim, P. Kumam, B. A. Hassan, A. B. Abubakar and J. Abubakar,
A derivative-free three-term hestenes-stiefel type method for constrained nonlinear equations and image restoration, International Journal of Computer Mathematics, 0 (2021), 1-22.
doi: 10.1080/00207160.2021.1946043. |
[45] |
A. H. Ibrahim, P. Kumam and W. Kumam,
A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access, 8 (2020), 162714-162729.
|
[46] |
A. H. Ibrahim, K. Muangchoo, A. B. Abubakar, A. D. Adedokun and H. Mohammed,
Spectral conjugate gradient like method for signal reconstruction, Thai J. Math., 18 (2020), 2013-2022.
|
[47] |
A. H. Ibrahim, K. Muangchoob, N. S. Mohamedc and A. B. Abubakar,
Derivative-free SMR conjugate gradient method for con-straint nonlinear equations, Journal of Mathematics and Computer Science, 24 (2022), 147-164.
|
[48] |
W. La Cruz, J. M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments, Citeseer, 2004; Technical Report RT-04-08 (https://www.ime.unicamp.br/ martinez/lmrreport.pdf). |
[49] |
Q. Li and D.-H. Li,
A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635.
doi: 10.1093/imanum/drq015. |
[50] |
D. A. Lorenz and T. Pock,
An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311-325.
doi: 10.1007/s10851-014-0523-2. |
[51] |
K. Meintjes and A. P. Morgan,
A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361.
doi: 10.1016/0096-3003(87)90076-2. |
[52] |
H. Mohammad,
Barzilai-Borwein-like method for solving large-scale non-linear systems of equations, J. Nigerian Math. Soc., 36 (2017), 71-83.
|
[53] |
H. Mohammad and A. B. Abubakar,
A descent derivative-free algorithm for nonlinear monotone equations with convex constraints, RAIRO Oper. Res., 54 (2020), 489-505.
doi: 10.1051/ro/2020008. |
[54] |
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ž. Vyčisl. Mat i Mat. Fiz., 4 (1964), 791–803. |
[55] |
L. Qi and J. Sun,
A nonsmooth version of Newton's method, Math. Programming, 58 (1993), 353-367.
doi: 10.1007/BF01581275. |
[56] |
M. V. Solodov and B. F. Svaiter,
A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776.
doi: 10.1137/S0363012997317475. |
[57] |
M. Sun, J. Liu and Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020), Art. ID 9175496, 11 pp.
doi: 10.1155/2020/9175496. |
[58] |
D. V. Thong and D. V. Hieu,
An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 19 (2017), 3029-3051.
doi: 10.1007/s11784-017-0464-7. |
[59] |
D. V. Thong and D. V. Hieu,
Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597-610.
doi: 10.1007/s11075-017-0452-4. |
[60] |
Y. Xiao and H. Zhu,
A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319.
doi: 10.1016/j.jmaa.2013.04.017. |
[61] |
N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, In: Topics in Numerical Analysis, 15, Springer, Vienna, (2001), 239–249.
doi: 10.1007/978-3-7091-6217-0_18. |
[62] |
Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu and Z. Li,
Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.
doi: 10.1016/j.apnum.2009.04.004. |
show all references
References:
[1] |
A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad and C. Tammer,
A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Appl. Anal. Optim., 4 (2020), 1-24.
|
[2] |
A. B. Abubakar and P. Kumam,
A descent Dai-Liao conjugate gradient method for nonlinear equations, Numerical Algorithms, 81 (2019), 197-210.
doi: 10.1007/s11075-018-0541-z. |
[3] |
A. B. Abubakar and P. Kumam,
An improved three-term derivative-free method for solving nonlinear equations, Comput. Appl. Math., 37 (2018), 6760-6773.
doi: 10.1007/s40314-018-0712-5. |
[4] |
A. B. Abubakar, P. Kumam and A. H. Ibrahim, Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations with Convex Constraints, IEEE Access. 2021. |
[5] |
J. Abubakar, P. Kumam, A. H. Ibrahim and et al.,
Inertial iterative schemes with variable step sizes for variational inequality problem involving pseudomonotone operator, Mathematics, 8 (2020), 609.
|
[6] |
A. B. Abubakar, P. Kumam, A. H. Ibrahim, P. Chaipunya and S. A. Rano, New Hybrid Three-Term Spectral-Conjugate Gradient Method for Finding Solutions of Nonlinear Monotone Operator Equations with Applications, Mathematics and Computers in Simulation, 2021. |
[7] |
A. B. Abubakar, P. Kumam, A. H. Ibrahim and J. Rilwan, Derivative-free HS-DY-type method for solving nonlinear equations and image restoration, Heliyon, 6 (2020), e05400. |
[8] |
A. B. Abubakar, P. Kumam and H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39 (2020), Paper No. 129, 35 pp.
doi: 10.1007/s40314-020-01151-5. |
[9] |
A. B. Abubakar, P. Kumam, H. Mohammad and A. H. Ibrahim,
PRP-like algorithm for monotone operator equations, Jpn. J. Ind. Appl. Math., 38 (2021), 805-822.
doi: 10.1007/s13160-021-00462-2. |
[10] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, J. Abubakar and S. A. Rano,
FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations, Arab. J. Math. (Springer), 10 (2021), 261-270.
doi: 10.1007/s40065-021-00313-5. |
[11] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, S. E. Fadugba, K. O. Aremu and L. O. Jolaoso, A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations, J. Math., 2021 (2021), Art. ID 5549878, 9 pp.
doi: 10.1155/2021/5549878. |
[12] |
A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, A. B. Muhammad, L. O. Jolaoso and K. O. Aremu,
A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration, IEEE Access, 9 (2021), 18262-18277.
|
[13] |
A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim and and I. Ahmed,
Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints, Thai J. Math., 18 (2020), 501-517.
|
[14] |
J. Abubakar, P. Kumam, A. H. Ibrahim and A. Padcharoen,
Relaxed inertial Tseng's type method for solving the inclusion problem with application to image restoration, Mathematics, 8 (2020), 818.
|
[15] |
J. Abubakar, K. Sombut, H. ur Rehman, A. H. Ibrahim and et al.,
An accelerated subgradient extragradient algorithm for strongly pseudomonotone variational inequality problems, Thai J. Math., 18 (2020), 166-187.
|
[16] |
W. Aj and B. Wollenberg, Power Generation, Operation and Control, New York: John Wiley & Sons. 1996,592. |
[17] |
F. Alvarez and H. Attouch,
An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3-11.
doi: 10.1023/A:1011253113155. |
[18] |
H. Attouch, J. Peypouquet and P. Redont,
A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24 (2014), 232-256.
doi: 10.1137/130910294. |
[19] |
A. Auslender, M. Teboulle and S. Ben-Tiba,
A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., 12 (1999), 31-40.
doi: 10.1023/A:1008607511915. |
[20] |
A. B. Abubakar, P. Kumam, M. Malik, P. Chaipunya and A. H. Ibrahim,
A hybrid FR-DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection, AIMS Math., 6 (2021), 6506-6527.
doi: 10.3934/math.2021383. |
[21] |
A. B. Abubakar, P. Kumam, M. Malik and A. H. Ibrahim, A Hybrid Conjugate Gradient Based Approach for Solving Unconstrained Optimization and Motion Control Problems., Mathematics and Computers in Simulation, 2021. |
[22] |
R. I. Boţ and E. R. Csetnek,
An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algorithms, 71 (2016), 519-540.
doi: 10.1007/s11075-015-0007-5. |
[23] |
R. I. Boţ and E. R. Csetnek,
A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 36 (2015), 951-963.
doi: 10.1080/01630563.2015.1042113. |
[24] |
R. I. Boţ, E. R. Csetnek and C. Hendrich,
Inertial Douglas–Rachford splitting for monotone inclusion problems, Appl. Math. Comput., 256 (2015), 472-487.
doi: 10.1016/j.amc.2015.01.017. |
[25] |
C. Chen, R. H. Chan, S. Ma and J. Yang,
Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8 (2015), 2239-2267.
doi: 10.1137/15100463X. |
[26] |
P. Chuasuk, F. Ogbuisi, Y. Shehu and P. Cholamjiak, New inertial method for generalized split variational inclusion problems, Journal of Industrial & Management Optimization, (2020). |
[27] |
J. E. Dennis Jr. and J. J. Moré,
A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comp., 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1. |
[28] |
J. E. Dennis Jr. and J. J. Moré,
Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977), 46-89.
doi: 10.1137/1019005. |
[29] |
J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM; 1996.
doi: 10.1137/1.9781611971200. |
[30] |
S. P. Dirkse and M. C. Ferris,
MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.
|
[31] |
E. D. Dolan and J. J. Moré,
Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[32] |
Q. L. Dong, Y. J. Cho, L. L. Zhong and Th. M. Rassias,
Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., 70 (2018), 687-704.
doi: 10.1007/s10898-017-0506-0. |
[33] |
M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Science & Business Media; 2010.
doi: 10.1007/978-1-4419-7011-4. |
[34] |
M. A. Figueiredo, R. D. Nowak and S. J. Wright,
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 586-597.
|
[35] |
P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55 (2018), Paper No. 53, 17 pp.
doi: 10.1007/s10092-018-0291-2. |
[36] |
A. H. Ibrahim, J. Deepho, A. B. Abubakar and A. Adamu, A three-term Polak-Ribiére-Polyak derivative-free method and its application to image restoration, Scientific African, 13 (2021), e00880. Available from: https://www.sciencedirect.com/science/article/pii/S2468227621001848. |
[37] |
A. H. Ibrahim, J. Deepho, A. B. Abubakar and K. O. Aremu, A Modified Liu-Storey-Conjugate Descent Hybrid Projection Method for Convex Constrained Nonlinear Equations and Image Restoration, Numerical Algebra, Control & Optimization, 2021. |
[38] |
A. H. Ibrahim, G. A. Isa, H. Usman, J. Abubakar and A. B. Abubakar,
Derivative-free RMIL conjugate gradient method for convex constrained equations, Thai J. Math., 18 (2019), 212-232.
|
[39] |
A. H. Ibrahim and P. Kumam, Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints, Ain Shams Engineering Journal, (2021). |
[40] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, J. Abubakar and A. B. Muhammad,
Least-square-based three-term conjugate gradient projection method for $\ell_1$-norm problems with application to compressed sensing, Mathematics, 8 (2020), 602.
|
[41] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. Batsari Yusuf, S. E. Yimer and K. O. Aremu,
An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration, AIMS Math., 6 (2021), 235-260.
doi: 10.3934/math.2021016. |
[42] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat and J. Abubakar, A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing, Heliyon, 6 (2020), e03466. |
[43] |
A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf and J. Rilwan,
Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery, J. Nonlinear Convex Anal., 21 (2020), 1959-1972.
|
[44] |
A. H. Ibrahim, P. Kumam, B. A. Hassan, A. B. Abubakar and J. Abubakar,
A derivative-free three-term hestenes-stiefel type method for constrained nonlinear equations and image restoration, International Journal of Computer Mathematics, 0 (2021), 1-22.
doi: 10.1080/00207160.2021.1946043. |
[45] |
A. H. Ibrahim, P. Kumam and W. Kumam,
A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration, IEEE Access, 8 (2020), 162714-162729.
|
[46] |
A. H. Ibrahim, K. Muangchoo, A. B. Abubakar, A. D. Adedokun and H. Mohammed,
Spectral conjugate gradient like method for signal reconstruction, Thai J. Math., 18 (2020), 2013-2022.
|
[47] |
A. H. Ibrahim, K. Muangchoob, N. S. Mohamedc and A. B. Abubakar,
Derivative-free SMR conjugate gradient method for con-straint nonlinear equations, Journal of Mathematics and Computer Science, 24 (2022), 147-164.
|
[48] |
W. La Cruz, J. M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments, Citeseer, 2004; Technical Report RT-04-08 (https://www.ime.unicamp.br/ martinez/lmrreport.pdf). |
[49] |
Q. Li and D.-H. Li,
A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635.
doi: 10.1093/imanum/drq015. |
[50] |
D. A. Lorenz and T. Pock,
An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311-325.
doi: 10.1007/s10851-014-0523-2. |
[51] |
K. Meintjes and A. P. Morgan,
A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361.
doi: 10.1016/0096-3003(87)90076-2. |
[52] |
H. Mohammad,
Barzilai-Borwein-like method for solving large-scale non-linear systems of equations, J. Nigerian Math. Soc., 36 (2017), 71-83.
|
[53] |
H. Mohammad and A. B. Abubakar,
A descent derivative-free algorithm for nonlinear monotone equations with convex constraints, RAIRO Oper. Res., 54 (2020), 489-505.
doi: 10.1051/ro/2020008. |
[54] |
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ž. Vyčisl. Mat i Mat. Fiz., 4 (1964), 791–803. |
[55] |
L. Qi and J. Sun,
A nonsmooth version of Newton's method, Math. Programming, 58 (1993), 353-367.
doi: 10.1007/BF01581275. |
[56] |
M. V. Solodov and B. F. Svaiter,
A new projection method for variational inequality problems, SIAM J. Control Optim., 37 (1999), 765-776.
doi: 10.1137/S0363012997317475. |
[57] |
M. Sun, J. Liu and Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020), Art. ID 9175496, 11 pp.
doi: 10.1155/2020/9175496. |
[58] |
D. V. Thong and D. V. Hieu,
An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 19 (2017), 3029-3051.
doi: 10.1007/s11784-017-0464-7. |
[59] |
D. V. Thong and D. V. Hieu,
Modified subgradient extragradient method for variational inequality problems, Numer. Algorithms, 79 (2018), 597-610.
doi: 10.1007/s11075-017-0452-4. |
[60] |
Y. Xiao and H. Zhu,
A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319.
doi: 10.1016/j.jmaa.2013.04.017. |
[61] |
N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, In: Topics in Numerical Analysis, 15, Springer, Vienna, (2001), 239–249.
doi: 10.1007/978-3-7091-6217-0_18. |
[62] |
Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu and Z. Li,
Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.
doi: 10.1016/j.apnum.2009.04.004. |







Standard deviation | Methods | RelErr | Iter | Times (s) |
Iner.Algo | 0.0317 | 279 | 2.15 | |
Algo | 0.0317 | 468 | 3.15 | |
Iner.Algo | 0.0281 | 292 | 2.21 | |
Algo | 0.0281 | 593 | 4.22 | |
Iner.Algo | 0.0328 | 288 | 2.39 | |
Algo | 0.0241 | 438 | 2.96 | |
Iner.Algo | 0.0518 | 337 | 2.55 | |
Algo | 0.0518 | 939 | 6.75 |
Standard deviation | Methods | RelErr | Iter | Times (s) |
Iner.Algo | 0.0317 | 279 | 2.15 | |
Algo | 0.0317 | 468 | 3.15 | |
Iner.Algo | 0.0281 | 292 | 2.21 | |
Algo | 0.0281 | 593 | 4.22 | |
Iner.Algo | 0.0328 | 288 | 2.39 | |
Algo | 0.0241 | 438 | 2.96 | |
Iner.Algo | 0.0518 | 337 | 2.55 | |
Algo | 0.0518 | 939 | 6.75 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 6 | 24 | 0.006537 | 4.32E-08 | 11 | 44 | 0.009092 | 5.72E-07 |
Case II | 7 | 28 | 0.008529 | 1.46E-07 | 11 | 44 | 0.013711 | 9.90E-07 | |
Case III | 7 | 28 | 0.006432 | 1.93E-07 | 12 | 48 | 0.013874 | 2.73E-07 | |
Case IV | 8 | 32 | 0.010414 | 1.79E-07 | 13 | 52 | 0.022209 | 3.00E-07 | |
Case V | 6 | 24 | 0.010836 | 7.10E-07 | 13 | 52 | 0.013571 | 6.02E-07 | |
Case VI | 8 | 32 | 0.00719 | 1.96E-07 | 13 | 52 | 0.010269 | 2.99E-07 | |
Case VII | 11 | 44 | 0.008426 | 1.12E-07 | 13 | 52 | 0.013525 | 6.09E-07 | |
5000 | Case I | 6 | 24 | 0.22912 | 2.95E-08 | 12 | 48 | 0.10538 | 2.54E-07 |
Case II | 7 | 28 | 0.85665 | 1.13E-07 | 12 | 48 | 0.079825 | 4.39E-07 | |
Case III | 7 | 28 | 0.53427 | 4.32E-07 | 12 | 48 | 0.032032 | 5.68E-07 | |
Case IV | 8 | 32 | 0.059319 | 3.98E-07 | 13 | 52 | 0.044075 | 4.28E-07 | |
Case V | 7 | 28 | 0.038857 | 3.61E-08 | 13 | 52 | 0.044154 | 4.83E-07 | |
Case VI | 8 | 32 | 0.065865 | 4.39E-07 | 13 | 52 | 0.18386 | 3.91E-07 | |
Case VII | 11 | 44 | 0.045807 | 3.86E-07 | 14 | 56 | 0.055375 | 2.68E-07 | |
10000 | Case I | 6 | 24 | 0.055883 | 2.62E-08 | 12 | 48 | 0.26245 | 3.59E-07 |
Case II | 7 | 28 | 0.10776 | 9.11E-08 | 12 | 48 | 0.084684 | 6.19E-07 | |
Case III | 7 | 28 | 0.12502 | 6.11E-07 | 12 | 48 | 0.07673 | 7.96E-07 | |
Case IV | 8 | 32 | 0.060193 | 5.62E-07 | 13 | 52 | 0.082261 | 5.60E-07 | |
Case V | 7 | 28 | 0.0602 | 5.18E-08 | 13 | 52 | 0.068433 | 4.87E-07 | |
Case VI | 8 | 32 | 0.05542 | 6.21E-07 | 13 | 52 | 0.066654 | 5.01E-07 | |
Case VII | 13 | 52 | 0.085591 | 1.80E-07 | 14 | 56 | 0.13534 | 3.78E-07 | |
50000 | Case I | 6 | 24 | 0.17095 | 2.91E-08 | 12 | 48 | 0.23645 | 8.03E-07 |
Case II | 7 | 28 | 0.15714 | 6.26E-08 | 13 | 52 | 0.25119 | 2.77E-07 | |
Case III | 8 | 32 | 0.57011 | 2.73E-08 | 13 | 52 | 0.21362 | 3.53E-07 | |
Case IV | 9 | 36 | 0.46934 | 2.51E-08 | 14 | 56 | 0.26703 | 2.34E-07 | |
Case V | 7 | 28 | 0.29169 | 1.17E-07 | 13 | 52 | 0.2287 | 7.20E-07 | |
Case VI | 9 | 36 | 0.2315 | 2.78E-08 | 14 | 56 | 0.24843 | 2.05E-07 | |
Case VII | 13 | 52 | 0.56004 | 2.37E-08 | 14 | 56 | 0.32785 | 8.43E-07 | |
100000 | Case I | 6 | 24 | 0.98438 | 3.58E-08 | 13 | 52 | 0.43828 | 2.27E-07 |
Case II | 7 | 28 | 0.39255 | 6.17E-08 | 13 | 52 | 0.62503 | 3.91E-07 | |
Case III | 8 | 32 | 0.48543 | 3.86E-08 | 13 | 52 | 0.42684 | 4.99E-07 | |
Case IV | 9 | 36 | 0.52322 | 3.56E-08 | 14 | 56 | 0.50903 | 3.28E-07 | |
Case V | 7 | 28 | 0.43716 | 1.66E-07 | 13 | 52 | 0.62726 | 9.52E-07 | |
Case VI | 9 | 36 | 0.54937 | 3.93E-08 | 14 | 56 | 0.49271 | 2.86E-07 | |
Case VII | 13 | 52 | 0.89929 | 4.99E-08 | 15 | 60 | 0.53354 | 2.38E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 6 | 24 | 0.006537 | 4.32E-08 | 11 | 44 | 0.009092 | 5.72E-07 |
Case II | 7 | 28 | 0.008529 | 1.46E-07 | 11 | 44 | 0.013711 | 9.90E-07 | |
Case III | 7 | 28 | 0.006432 | 1.93E-07 | 12 | 48 | 0.013874 | 2.73E-07 | |
Case IV | 8 | 32 | 0.010414 | 1.79E-07 | 13 | 52 | 0.022209 | 3.00E-07 | |
Case V | 6 | 24 | 0.010836 | 7.10E-07 | 13 | 52 | 0.013571 | 6.02E-07 | |
Case VI | 8 | 32 | 0.00719 | 1.96E-07 | 13 | 52 | 0.010269 | 2.99E-07 | |
Case VII | 11 | 44 | 0.008426 | 1.12E-07 | 13 | 52 | 0.013525 | 6.09E-07 | |
5000 | Case I | 6 | 24 | 0.22912 | 2.95E-08 | 12 | 48 | 0.10538 | 2.54E-07 |
Case II | 7 | 28 | 0.85665 | 1.13E-07 | 12 | 48 | 0.079825 | 4.39E-07 | |
Case III | 7 | 28 | 0.53427 | 4.32E-07 | 12 | 48 | 0.032032 | 5.68E-07 | |
Case IV | 8 | 32 | 0.059319 | 3.98E-07 | 13 | 52 | 0.044075 | 4.28E-07 | |
Case V | 7 | 28 | 0.038857 | 3.61E-08 | 13 | 52 | 0.044154 | 4.83E-07 | |
Case VI | 8 | 32 | 0.065865 | 4.39E-07 | 13 | 52 | 0.18386 | 3.91E-07 | |
Case VII | 11 | 44 | 0.045807 | 3.86E-07 | 14 | 56 | 0.055375 | 2.68E-07 | |
10000 | Case I | 6 | 24 | 0.055883 | 2.62E-08 | 12 | 48 | 0.26245 | 3.59E-07 |
Case II | 7 | 28 | 0.10776 | 9.11E-08 | 12 | 48 | 0.084684 | 6.19E-07 | |
Case III | 7 | 28 | 0.12502 | 6.11E-07 | 12 | 48 | 0.07673 | 7.96E-07 | |
Case IV | 8 | 32 | 0.060193 | 5.62E-07 | 13 | 52 | 0.082261 | 5.60E-07 | |
Case V | 7 | 28 | 0.0602 | 5.18E-08 | 13 | 52 | 0.068433 | 4.87E-07 | |
Case VI | 8 | 32 | 0.05542 | 6.21E-07 | 13 | 52 | 0.066654 | 5.01E-07 | |
Case VII | 13 | 52 | 0.085591 | 1.80E-07 | 14 | 56 | 0.13534 | 3.78E-07 | |
50000 | Case I | 6 | 24 | 0.17095 | 2.91E-08 | 12 | 48 | 0.23645 | 8.03E-07 |
Case II | 7 | 28 | 0.15714 | 6.26E-08 | 13 | 52 | 0.25119 | 2.77E-07 | |
Case III | 8 | 32 | 0.57011 | 2.73E-08 | 13 | 52 | 0.21362 | 3.53E-07 | |
Case IV | 9 | 36 | 0.46934 | 2.51E-08 | 14 | 56 | 0.26703 | 2.34E-07 | |
Case V | 7 | 28 | 0.29169 | 1.17E-07 | 13 | 52 | 0.2287 | 7.20E-07 | |
Case VI | 9 | 36 | 0.2315 | 2.78E-08 | 14 | 56 | 0.24843 | 2.05E-07 | |
Case VII | 13 | 52 | 0.56004 | 2.37E-08 | 14 | 56 | 0.32785 | 8.43E-07 | |
100000 | Case I | 6 | 24 | 0.98438 | 3.58E-08 | 13 | 52 | 0.43828 | 2.27E-07 |
Case II | 7 | 28 | 0.39255 | 6.17E-08 | 13 | 52 | 0.62503 | 3.91E-07 | |
Case III | 8 | 32 | 0.48543 | 3.86E-08 | 13 | 52 | 0.42684 | 4.99E-07 | |
Case IV | 9 | 36 | 0.52322 | 3.56E-08 | 14 | 56 | 0.50903 | 3.28E-07 | |
Case V | 7 | 28 | 0.43716 | 1.66E-07 | 13 | 52 | 0.62726 | 9.52E-07 | |
Case VI | 9 | 36 | 0.54937 | 3.93E-08 | 14 | 56 | 0.49271 | 2.86E-07 | |
Case VII | 13 | 52 | 0.89929 | 4.99E-08 | 15 | 60 | 0.53354 | 2.38E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 4 | 12 | 0.087572 | 7.61E-09 | 4 | 12 | 0.008488 | 5.17E-07 |
Case II | 5 | 15 | 0.016259 | 6.04E-09 | 5 | 15 | 0.006875 | 6.04E-09 | |
Case III | 5 | 15 | 0.011455 | 4.37E-07 | 5 | 15 | 0.006569 | 4.37E-07 | |
Case IV | 6 | 18 | 0.011153 | 1.52E-07 | 6 | 18 | 0.008092 | 1.52E-07 | |
Case V | 7 | 21 | 0.00633 | 1.10E-09 | 7 | 21 | 0.005713 | 1.10E-09 | |
Case VI | 7 | 21 | 0.011702 | 1.74E-08 | 7 | 21 | 0.004815 | 1.74E-08 | |
Case VII | 11 | 35 | 0.012359 | 2.77E-07 | 15 | 49 | 0.021261 | 3.66E-07 | |
5000 | Case I | 4 | 12 | 0.064074 | 8.56E-10 | 4 | 12 | 0.035632 | 1.75E-07 |
Case II | 5 | 15 | 0.076987 | 6.27E-10 | 5 | 15 | 0.019409 | 6.27E-10 | |
Case III | 5 | 15 | 0.027949 | 1.42E-07 | 5 | 15 | 0.014664 | 1.42E-07 | |
Case IV | 6 | 18 | 0.036548 | 3.94E-08 | 6 | 18 | 0.026202 | 3.94E-08 | |
Case V | 6 | 18 | 0.01692 | 4.05E-07 | 6 | 18 | 0.018243 | 4.05E-07 | |
Case VI | 7 | 21 | 0.025943 | 2.36E-09 | 7 | 21 | 0.027663 | 2.36E-09 | |
Case VII | 13 | 43 | 0.094345 | 3.76E-09 | 18 | 62 | 0.19571 | 1.75E-07 | |
10000 | Case I | 4 | 12 | 0.022826 | 3.98E-10 | 4 | 12 | 0.02201 | 1.21E-07 |
Case II | 5 | 15 | 0.029782 | 2.79E-10 | 5 | 15 | 0.03389 | 2.79E-10 | |
Case III | 5 | 15 | 0.036108 | 9.73E-08 | 5 | 15 | 0.020746 | 9.73E-08 | |
Case IV | 6 | 18 | 0.031098 | 2.56E-08 | 6 | 18 | 0.031954 | 2.56E-08 | |
Case V | 6 | 18 | 0.11664 | 2.93E-07 | 6 | 18 | 0.13272 | 2.93E-07 | |
Case VI | 7 | 21 | 0.039807 | 1.24E-09 | 7 | 21 | 0.056343 | 1.24E-09 | |
Case VII | 13 | 43 | 0.37509 | 1.17E-08 | 20 | 69 | 0.12928 | 9.06E-08 | |
50000 | Case I | 4 | 13 | 0.36887 | 1.05E-10 | 4 | 12 | 0.15651 | 6.32E-08 |
Case II | 5 | 16 | 0.42862 | 6.75E-11 | 5 | 16 | 0.10554 | 6.75E-11 | |
Case III | 5 | 15 | 0.24321 | 4.87E-08 | 5 | 15 | 0.16698 | 4.87E-08 | |
Case IV | 6 | 18 | 0.46737 | 1.11E-08 | 6 | 18 | 0.1099 | 1.11E-08 | |
Case V | 6 | 18 | 0.13319 | 1.84E-07 | 6 | 18 | 0.11779 | 1.84E-07 | |
Case VI | 7 | 21 | 0.18161 | 4.01E-10 | 7 | 21 | 0.1203 | 4.01E-10 | |
Case VII | 16 | 54 | 0.46124 | 1.11E-09 | 23 | 81 | 0.5211 | 6.89E-07 | |
100000 | Case I | 4 | 13 | 0.26038 | 6.80E-11 | 4 | 12 | 0.13094 | 5.40E-08 |
Case II | 5 | 16 | 0.30277 | 4.27E-11 | 5 | 16 | 0.18755 | 4.27E-11 | |
Case III | 5 | 15 | 0.4347 | 4.05E-08 | 5 | 15 | 0.27985 | 4.05E-08 | |
Case IV | 6 | 18 | 0.42556 | 8.15E-09 | 6 | 18 | 0.19207 | 8.15E-09 | |
Case V | 6 | 18 | 0.25488 | 1.80E-07 | 6 | 18 | 0.20156 | 1.80E-07 | |
Case VI | 7 | 21 | 0.43576 | 2.71E-10 | 7 | 21 | 0.21005 | 2.71E-10 | |
Case VII | 15 | 51 | 0.82806 | 1.64E-09 | 24 | 86 | 1.1405 | 4.14E-09 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 4 | 12 | 0.087572 | 7.61E-09 | 4 | 12 | 0.008488 | 5.17E-07 |
Case II | 5 | 15 | 0.016259 | 6.04E-09 | 5 | 15 | 0.006875 | 6.04E-09 | |
Case III | 5 | 15 | 0.011455 | 4.37E-07 | 5 | 15 | 0.006569 | 4.37E-07 | |
Case IV | 6 | 18 | 0.011153 | 1.52E-07 | 6 | 18 | 0.008092 | 1.52E-07 | |
Case V | 7 | 21 | 0.00633 | 1.10E-09 | 7 | 21 | 0.005713 | 1.10E-09 | |
Case VI | 7 | 21 | 0.011702 | 1.74E-08 | 7 | 21 | 0.004815 | 1.74E-08 | |
Case VII | 11 | 35 | 0.012359 | 2.77E-07 | 15 | 49 | 0.021261 | 3.66E-07 | |
5000 | Case I | 4 | 12 | 0.064074 | 8.56E-10 | 4 | 12 | 0.035632 | 1.75E-07 |
Case II | 5 | 15 | 0.076987 | 6.27E-10 | 5 | 15 | 0.019409 | 6.27E-10 | |
Case III | 5 | 15 | 0.027949 | 1.42E-07 | 5 | 15 | 0.014664 | 1.42E-07 | |
Case IV | 6 | 18 | 0.036548 | 3.94E-08 | 6 | 18 | 0.026202 | 3.94E-08 | |
Case V | 6 | 18 | 0.01692 | 4.05E-07 | 6 | 18 | 0.018243 | 4.05E-07 | |
Case VI | 7 | 21 | 0.025943 | 2.36E-09 | 7 | 21 | 0.027663 | 2.36E-09 | |
Case VII | 13 | 43 | 0.094345 | 3.76E-09 | 18 | 62 | 0.19571 | 1.75E-07 | |
10000 | Case I | 4 | 12 | 0.022826 | 3.98E-10 | 4 | 12 | 0.02201 | 1.21E-07 |
Case II | 5 | 15 | 0.029782 | 2.79E-10 | 5 | 15 | 0.03389 | 2.79E-10 | |
Case III | 5 | 15 | 0.036108 | 9.73E-08 | 5 | 15 | 0.020746 | 9.73E-08 | |
Case IV | 6 | 18 | 0.031098 | 2.56E-08 | 6 | 18 | 0.031954 | 2.56E-08 | |
Case V | 6 | 18 | 0.11664 | 2.93E-07 | 6 | 18 | 0.13272 | 2.93E-07 | |
Case VI | 7 | 21 | 0.039807 | 1.24E-09 | 7 | 21 | 0.056343 | 1.24E-09 | |
Case VII | 13 | 43 | 0.37509 | 1.17E-08 | 20 | 69 | 0.12928 | 9.06E-08 | |
50000 | Case I | 4 | 13 | 0.36887 | 1.05E-10 | 4 | 12 | 0.15651 | 6.32E-08 |
Case II | 5 | 16 | 0.42862 | 6.75E-11 | 5 | 16 | 0.10554 | 6.75E-11 | |
Case III | 5 | 15 | 0.24321 | 4.87E-08 | 5 | 15 | 0.16698 | 4.87E-08 | |
Case IV | 6 | 18 | 0.46737 | 1.11E-08 | 6 | 18 | 0.1099 | 1.11E-08 | |
Case V | 6 | 18 | 0.13319 | 1.84E-07 | 6 | 18 | 0.11779 | 1.84E-07 | |
Case VI | 7 | 21 | 0.18161 | 4.01E-10 | 7 | 21 | 0.1203 | 4.01E-10 | |
Case VII | 16 | 54 | 0.46124 | 1.11E-09 | 23 | 81 | 0.5211 | 6.89E-07 | |
100000 | Case I | 4 | 13 | 0.26038 | 6.80E-11 | 4 | 12 | 0.13094 | 5.40E-08 |
Case II | 5 | 16 | 0.30277 | 4.27E-11 | 5 | 16 | 0.18755 | 4.27E-11 | |
Case III | 5 | 15 | 0.4347 | 4.05E-08 | 5 | 15 | 0.27985 | 4.05E-08 | |
Case IV | 6 | 18 | 0.42556 | 8.15E-09 | 6 | 18 | 0.19207 | 8.15E-09 | |
Case V | 6 | 18 | 0.25488 | 1.80E-07 | 6 | 18 | 0.20156 | 1.80E-07 | |
Case VI | 7 | 21 | 0.43576 | 2.71E-10 | 7 | 21 | 0.21005 | 2.71E-10 | |
Case VII | 15 | 51 | 0.82806 | 1.64E-09 | 24 | 86 | 1.1405 | 4.14E-09 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 13 | 52 | 0.075605 | 3.36E-07 | 31 | 124 | 0.023401 | 6.98E-07 |
Case II | 14 | 56 | 0.033438 | 9.91E-07 | 32 | 126 | 0.016722 | 2.09E-22 | |
Case III | 15 | 59 | 0.014509 | 6.78E-07 | 34 | 135 | 0.029896 | 7.24E-07 | |
Case IV | 15 | 59 | 0.022327 | 8.58E-07 | 35 | 140 | 0.033452 | 8.69E-07 | |
Case V | 15 | 59 | 0.012348 | 4.93E-07 | 35 | 140 | 0.024649 | 9.73E-07 | |
Case VI | 16 | 64 | 0.011655 | 6.63E-07 | 36 | 142 | 0.041312 | 0 | |
Case VII | 15 | 60 | 0.019587 | 7.37E-07 | 34 | 136 | 0.018809 | 8.10E-07 | |
5000 | Case I | 13 | 51 | 0.084308 | 7.51E-07 | 30 | 118 | 0.095447 | 0 |
Case II | 15 | 60 | 0.052927 | 6.65E-07 | 31 | 122 | 0.50476 | 5.62E-21 | |
Case III | 16 | 62 | 0.08685 | 0 | 35 | 140 | 0.084126 | 9.71E-07 | |
Case IV | 16 | 62 | 0.054943 | 1.40E-21 | 36 | 143 | 0.095079 | 7.25E-21 | |
Case V | 16 | 64 | 0.10298 | 3.31E-07 | 35 | 138 | 0.26686 | 1.40E-21 | |
Case VI | 17 | 66 | 0.121 | 2.34E-22 | 36 | 142 | 0.16331 | 0 | |
Case VII | 16 | 64 | 0.82826 | 5.03E-07 | 36 | 144 | 0.16091 | 6.28E-07 | |
10000 | Case I | 14 | 55 | 0.094948 | 3.19E-07 | 31 | 122 | 0.12401 | 6.62E-22 |
Case II | 15 | 60 | 0.17919 | 9.40E-07 | 32 | 126 | 0.14805 | 0 | |
Case III | 16 | 62 | 0.085448 | 3.31E-22 | 36 | 143 | 0.13867 | 8.24E-07 | |
Case IV | 16 | 64 | 0.12333 | 8.14E-07 | 35 | 138 | 0.15826 | 2.65E-21 | |
Case V | 16 | 62 | 0.1041 | 3.31E-22 | 35 | 138 | 0.27449 | 6.62E-22 | |
Case VI | 17 | 66 | 0.11764 | 0 | 36 | 143 | 0.16026 | 2.65E-21 | |
Case VII | 16 | 64 | 0.081495 | 7.03E-07 | 36 | 144 | 0.19776 | 8.97E-07 | |
50000 | Case I | 12 | 46 | 0.4807 | 1.15E-19 | 31 | 122 | 0.53862 | 2.96E-21 |
Case II | 16 | 62 | 0.85283 | 0 | 31 | 122 | 0.5534 | 2.96E-21 | |
Case III | 16 | 62 | 0.43053 | 3.70E-21 | 33 | 130 | 0.66305 | 0 | |
Case IV | 15 | 58 | 0.34538 | 1.78E-20 | 34 | 134 | 0.59923 | 2.37E-20 | |
Case V | 17 | 66 | 0.45061 | 0 | 35 | 138 | 0.82508 | 1.48E-21 | |
Case VI | 18 | 72 | 0.46072 | 4.22E-07 | 36 | 143 | 0.62746 | 2.96E-21 | |
Case VII | 17 | 68 | 0.40219 | 4.73E-07 | 38 | 152 | 0.6653 | 7.24E-07 | |
100000 | Case I | 15 | 60 | 0.73965 | 3.02E-07 | 31 | 122 | 1.139 | 2.09E-21 |
Case II | 16 | 62 | 1.1267 | 5.23E-22 | 37 | 148 | 1.361 | 6.48E-07 | |
Case III | 17 | 68 | 0.58078 | 6.10E-07 | 38 | 151 | 1.5385 | 9.38E-07 | |
Case IV | 17 | 68 | 0.64576 | 7.73E-07 | 37 | 146 | 1.3166 | 0 | |
Case V | 17 | 68 | 0.77823 | 4.44E-07 | 40 | 158 | 1.4507 | 0 | |
Case VI | 17 | 66 | 0.67135 | 3.14E-21 | 40 | 159 | 1.4451 | 8.14E-07 | |
Case VII | 17 | 68 | 0.67963 | 6.70E-07 | 39 | 156 | 1.5115 | 6.14E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 13 | 52 | 0.075605 | 3.36E-07 | 31 | 124 | 0.023401 | 6.98E-07 |
Case II | 14 | 56 | 0.033438 | 9.91E-07 | 32 | 126 | 0.016722 | 2.09E-22 | |
Case III | 15 | 59 | 0.014509 | 6.78E-07 | 34 | 135 | 0.029896 | 7.24E-07 | |
Case IV | 15 | 59 | 0.022327 | 8.58E-07 | 35 | 140 | 0.033452 | 8.69E-07 | |
Case V | 15 | 59 | 0.012348 | 4.93E-07 | 35 | 140 | 0.024649 | 9.73E-07 | |
Case VI | 16 | 64 | 0.011655 | 6.63E-07 | 36 | 142 | 0.041312 | 0 | |
Case VII | 15 | 60 | 0.019587 | 7.37E-07 | 34 | 136 | 0.018809 | 8.10E-07 | |
5000 | Case I | 13 | 51 | 0.084308 | 7.51E-07 | 30 | 118 | 0.095447 | 0 |
Case II | 15 | 60 | 0.052927 | 6.65E-07 | 31 | 122 | 0.50476 | 5.62E-21 | |
Case III | 16 | 62 | 0.08685 | 0 | 35 | 140 | 0.084126 | 9.71E-07 | |
Case IV | 16 | 62 | 0.054943 | 1.40E-21 | 36 | 143 | 0.095079 | 7.25E-21 | |
Case V | 16 | 64 | 0.10298 | 3.31E-07 | 35 | 138 | 0.26686 | 1.40E-21 | |
Case VI | 17 | 66 | 0.121 | 2.34E-22 | 36 | 142 | 0.16331 | 0 | |
Case VII | 16 | 64 | 0.82826 | 5.03E-07 | 36 | 144 | 0.16091 | 6.28E-07 | |
10000 | Case I | 14 | 55 | 0.094948 | 3.19E-07 | 31 | 122 | 0.12401 | 6.62E-22 |
Case II | 15 | 60 | 0.17919 | 9.40E-07 | 32 | 126 | 0.14805 | 0 | |
Case III | 16 | 62 | 0.085448 | 3.31E-22 | 36 | 143 | 0.13867 | 8.24E-07 | |
Case IV | 16 | 64 | 0.12333 | 8.14E-07 | 35 | 138 | 0.15826 | 2.65E-21 | |
Case V | 16 | 62 | 0.1041 | 3.31E-22 | 35 | 138 | 0.27449 | 6.62E-22 | |
Case VI | 17 | 66 | 0.11764 | 0 | 36 | 143 | 0.16026 | 2.65E-21 | |
Case VII | 16 | 64 | 0.081495 | 7.03E-07 | 36 | 144 | 0.19776 | 8.97E-07 | |
50000 | Case I | 12 | 46 | 0.4807 | 1.15E-19 | 31 | 122 | 0.53862 | 2.96E-21 |
Case II | 16 | 62 | 0.85283 | 0 | 31 | 122 | 0.5534 | 2.96E-21 | |
Case III | 16 | 62 | 0.43053 | 3.70E-21 | 33 | 130 | 0.66305 | 0 | |
Case IV | 15 | 58 | 0.34538 | 1.78E-20 | 34 | 134 | 0.59923 | 2.37E-20 | |
Case V | 17 | 66 | 0.45061 | 0 | 35 | 138 | 0.82508 | 1.48E-21 | |
Case VI | 18 | 72 | 0.46072 | 4.22E-07 | 36 | 143 | 0.62746 | 2.96E-21 | |
Case VII | 17 | 68 | 0.40219 | 4.73E-07 | 38 | 152 | 0.6653 | 7.24E-07 | |
100000 | Case I | 15 | 60 | 0.73965 | 3.02E-07 | 31 | 122 | 1.139 | 2.09E-21 |
Case II | 16 | 62 | 1.1267 | 5.23E-22 | 37 | 148 | 1.361 | 6.48E-07 | |
Case III | 17 | 68 | 0.58078 | 6.10E-07 | 38 | 151 | 1.5385 | 9.38E-07 | |
Case IV | 17 | 68 | 0.64576 | 7.73E-07 | 37 | 146 | 1.3166 | 0 | |
Case V | 17 | 68 | 0.77823 | 4.44E-07 | 40 | 158 | 1.4507 | 0 | |
Case VI | 17 | 66 | 0.67135 | 3.14E-21 | 40 | 159 | 1.4451 | 8.14E-07 | |
Case VII | 17 | 68 | 0.67963 | 6.70E-07 | 39 | 156 | 1.5115 | 6.14E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 13 | 51 | 0.06059 | 3.25E-07 | 31 | 124 | 0.02262 | 6.43E-07 |
Case II | 14 | 56 | 0.008665 | 7.01E-07 | 32 | 128 | 0.020618 | 7.10E-07 | |
Case III | 14 | 56 | 0.023062 | 7.14E-07 | 33 | 132 | 0.030138 | 8.25E-07 | |
Case IV | 14 | 56 | 0.009094 | 9.53E-07 | 33 | 132 | 0.022234 | 9.09E-07 | |
Case V | 15 | 60 | 0.019868 | 8.47E-07 | 32 | 128 | 0.020698 | 6.86E-07 | |
Case VI | 15 | 60 | 0.032655 | 7.79E-07 | 35 | 140 | 0.033957 | 6.08E-07 | |
Case VII | 16 | 64 | 0.016672 | 4.18E-07 | 33 | 132 | 0.030958 | 7.44E-07 | |
5000 | Case I | 13 | 51 | 0.057064 | 7.27E-07 | 32 | 127 | 0.083999 | 8.63E-07 |
Case II | 15 | 59 | 0.047515 | 4.70E-07 | 33 | 132 | 0.15239 | 9.52E-07 | |
Case III | 15 | 59 | 0.032093 | 4.79E-07 | 35 | 140 | 0.061537 | 6.64E-07 | |
Case IV | 15 | 59 | 0.062007 | 6.39E-07 | 35 | 140 | 0.13051 | 7.32E-07 | |
Case V | 16 | 63 | 0.045188 | 5.68E-07 | 33 | 132 | 0.071242 | 9.20E-07 | |
Case VI | 16 | 64 | 0.037473 | 5.22E-07 | 36 | 144 | 0.060172 | 8.16E-07 | |
Case VII | 16 | 64 | 0.030254 | 8.70E-07 | 35 | 140 | 0.072475 | 6.05E-07 | |
10000 | Case I | - | - | - | - | 33 | 131 | 0.12064 | 7.32E-07 |
Case II | 15 | 59 | 0.048278 | 6.65E-07 | 34 | 135 | 0.63105 | 8.08E-07 | |
Case III | 15 | 59 | 0.057155 | 6.77E-07 | 35 | 140 | 0.11101 | 9.39E-07 | |
Case IV | 15 | 60 | 0.060725 | 9.04E-07 | 36 | 143 | 0.1951 | 6.21E-07 | |
Case V | 16 | 63 | 0.053938 | 8.04E-07 | 34 | 135 | 0.12425 | 7.81E-07 | |
Case VI | 16 | 63 | 0.066593 | 7.39E-07 | 37 | 147 | 0.20795 | 6.92E-07 | |
Case VII | 17 | 68 | 0.057214 | 3.60E-07 | 35 | 140 | 0.12255 | 8.50E-07 | |
50000 | Case I | 14 | 55 | 1.0077 | 6.89E-07 | 34 | 134 | 0.42136 | 0 |
Case II | 16 | 63 | 0.61724 | 4.46E-07 | 35 | 138 | 0.43246 | 0 | |
Case III | 16 | 63 | 0.32509 | 4.54E-07 | 37 | 147 | 1.0982 | 7.56E-07 | |
Case IV | 16 | 63 | 0.19589 | 6.06E-07 | 37 | 148 | 0.59668 | 8.33E-07 | |
Case V | 17 | 66 | 0.24309 | 0 | - | - | - | - | |
Case VI | - | - | - | - | - | - | - | - | |
Case VII | 17 | 68 | 0.2842 | 8.32E-07 | 37 | 148 | 0.47886 | 6.85E-07 | |
100000 | Case I | 14 | 54 | 0.32344 | 0 | - | - | - | - |
Case II | 16 | 63 | 0.51789 | 6.31E-07 | 35 | 138 | 0.81304 | 0 | |
Case III | 16 | 62 | 0.5148 | 0 | 38 | 150 | 1.2176 | 0 | |
Case IV | - | - | - | - | 38 | 151 | 1.0824 | 7.07E-07 | |
Case V | 17 | 68 | 0.56565 | 7.63E-07 | 35 | 138 | 1.0007 | 0 | |
Case VI | 17 | 68 | 0.57103 | 7.01E-07 | - | - | - | - | |
Case VII | 18 | 72 | 0.53447 | 3.50E-07 | 37 | 148 | 0.88698 | 9.70E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 13 | 51 | 0.06059 | 3.25E-07 | 31 | 124 | 0.02262 | 6.43E-07 |
Case II | 14 | 56 | 0.008665 | 7.01E-07 | 32 | 128 | 0.020618 | 7.10E-07 | |
Case III | 14 | 56 | 0.023062 | 7.14E-07 | 33 | 132 | 0.030138 | 8.25E-07 | |
Case IV | 14 | 56 | 0.009094 | 9.53E-07 | 33 | 132 | 0.022234 | 9.09E-07 | |
Case V | 15 | 60 | 0.019868 | 8.47E-07 | 32 | 128 | 0.020698 | 6.86E-07 | |
Case VI | 15 | 60 | 0.032655 | 7.79E-07 | 35 | 140 | 0.033957 | 6.08E-07 | |
Case VII | 16 | 64 | 0.016672 | 4.18E-07 | 33 | 132 | 0.030958 | 7.44E-07 | |
5000 | Case I | 13 | 51 | 0.057064 | 7.27E-07 | 32 | 127 | 0.083999 | 8.63E-07 |
Case II | 15 | 59 | 0.047515 | 4.70E-07 | 33 | 132 | 0.15239 | 9.52E-07 | |
Case III | 15 | 59 | 0.032093 | 4.79E-07 | 35 | 140 | 0.061537 | 6.64E-07 | |
Case IV | 15 | 59 | 0.062007 | 6.39E-07 | 35 | 140 | 0.13051 | 7.32E-07 | |
Case V | 16 | 63 | 0.045188 | 5.68E-07 | 33 | 132 | 0.071242 | 9.20E-07 | |
Case VI | 16 | 64 | 0.037473 | 5.22E-07 | 36 | 144 | 0.060172 | 8.16E-07 | |
Case VII | 16 | 64 | 0.030254 | 8.70E-07 | 35 | 140 | 0.072475 | 6.05E-07 | |
10000 | Case I | - | - | - | - | 33 | 131 | 0.12064 | 7.32E-07 |
Case II | 15 | 59 | 0.048278 | 6.65E-07 | 34 | 135 | 0.63105 | 8.08E-07 | |
Case III | 15 | 59 | 0.057155 | 6.77E-07 | 35 | 140 | 0.11101 | 9.39E-07 | |
Case IV | 15 | 60 | 0.060725 | 9.04E-07 | 36 | 143 | 0.1951 | 6.21E-07 | |
Case V | 16 | 63 | 0.053938 | 8.04E-07 | 34 | 135 | 0.12425 | 7.81E-07 | |
Case VI | 16 | 63 | 0.066593 | 7.39E-07 | 37 | 147 | 0.20795 | 6.92E-07 | |
Case VII | 17 | 68 | 0.057214 | 3.60E-07 | 35 | 140 | 0.12255 | 8.50E-07 | |
50000 | Case I | 14 | 55 | 1.0077 | 6.89E-07 | 34 | 134 | 0.42136 | 0 |
Case II | 16 | 63 | 0.61724 | 4.46E-07 | 35 | 138 | 0.43246 | 0 | |
Case III | 16 | 63 | 0.32509 | 4.54E-07 | 37 | 147 | 1.0982 | 7.56E-07 | |
Case IV | 16 | 63 | 0.19589 | 6.06E-07 | 37 | 148 | 0.59668 | 8.33E-07 | |
Case V | 17 | 66 | 0.24309 | 0 | - | - | - | - | |
Case VI | - | - | - | - | - | - | - | - | |
Case VII | 17 | 68 | 0.2842 | 8.32E-07 | 37 | 148 | 0.47886 | 6.85E-07 | |
100000 | Case I | 14 | 54 | 0.32344 | 0 | - | - | - | - |
Case II | 16 | 63 | 0.51789 | 6.31E-07 | 35 | 138 | 0.81304 | 0 | |
Case III | 16 | 62 | 0.5148 | 0 | 38 | 150 | 1.2176 | 0 | |
Case IV | - | - | - | - | 38 | 151 | 1.0824 | 7.07E-07 | |
Case V | 17 | 68 | 0.56565 | 7.63E-07 | 35 | 138 | 1.0007 | 0 | |
Case VI | 17 | 68 | 0.57103 | 7.01E-07 | - | - | - | - | |
Case VII | 18 | 72 | 0.53447 | 3.50E-07 | 37 | 148 | 0.88698 | 9.70E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 25 | 95 | 0.1329 | 6.45E-07 | 36 | 139 | 0.019135 | 6.42E-07 |
Case II | 19 | 72 | 0.014534 | 4.04E-07 | 36 | 140 | 0.018994 | 6.62E-07 | |
Case III | 22 | 86 | 0.022553 | 9.29E-07 | 47 | 175 | 0.044522 | 6.46E-07 | |
Case IV | 22 | 88 | 0.036427 | 4.00E-07 | 40 | 156 | 0.03131 | 6.54E-07 | |
Case V | 25 | 100 | 0.037173 | 4.90E-07 | 37 | 146 | 0.023349 | 7.12E-07 | |
Case VI | 41 | 164 | 0.071153 | 6.01E-07 | 36 | 143 | 0.037977 | 9.25E-07 | |
Case VII | 42 | 167 | 0.12029 | 4.55E-07 | 49 | 184 | 0.060357 | 9.87E-07 | |
5000 | Case I | 22 | 83 | 0.13573 | 6.53E-07 | 36 | 139 | 0.11871 | 6.40E-07 |
Case II | 19 | 72 | 0.11048 | 8.54E-07 | 37 | 144 | 0.088934 | 9.52E-07 | |
Case III | 25 | 98 | 0.090732 | 3.03E-07 | 51 | 189 | 0.10334 | 9.00E-07 | |
Case IV | 24 | 96 | 0.061785 | 8.38E-07 | 44 | 169 | 0.44477 | 9.18E-07 | |
Case V | 30 | 120 | 0.1862 | 4.11E-07 | 40 | 157 | 0.11434 | 6.51E-07 | |
Case VI | 54 | 216 | 0.33113 | 9.45E-07 | 41 | 160 | 0.10301 | 8.14E-07 | |
Case VII | 69 | 275 | 0.5637 | 3.29E-07 | 47 | 180 | 0.107 | 9.84E-07 | |
10000 | Case I | 27 | 103 | 0.14553 | 4.01E-07 | 36 | 139 | 0.1347 | 7.33E-07 |
Case II | 20 | 76 | 0.086196 | 3.64E-07 | 38 | 147 | 0.15397 | 8.23E-07 | |
Case III | 25 | 98 | 0.20935 | 8.75E-07 | 47 | 177 | 0.17983 | 7.72E-07 | |
Case IV | 24 | 96 | 0.19624 | 5.28E-07 | 44 | 170 | 0.19929 | 7.87E-07 | |
Case V | 35 | 140 | 0.1977 | 6.41E-07 | 42 | 163 | 0.18619 | 9.45E-07 | |
Case VI | 60 | 240 | 0.65802 | 4.12E-07 | 49 | 185 | 0.47874 | 7.04E-07 | |
Case VII | 84 | 335 | 0.96443 | 8.09E-07 | 43 | 169 | 0.1934 | 7.22E-07 | |
50000 | Case I | 55 | 215 | 2.6998 | 9.96E-07 | 65 | 255 | 1.3087 | 8.37E-07 |
Case II | 20 | 76 | 0.2954 | 8.35E-07 | 48 | 179 | 0.92835 | 6.84E-07 | |
Case III | 27 | 106 | 0.47985 | 8.73E-07 | 67 | 240 | 0.92921 | 6.31E-07 | |
Case IV | 41 | 164 | 1.7421 | 9.71E-07 | 47 | 181 | 0.72302 | 6.44E-07 | |
Case V | 36 | 144 | 1.5835 | 8.46E-07 | 45 | 174 | 0.86921 | 7.83E-07 | |
Case VI | 79 | 316 | 4.0512 | 6.61E-07 | 54 | 201 | 0.94527 | 9.68E-07 | |
Case VII | 103 | 411 | 6.5137 | 7.57E-07 | 52 | 204 | 0.79431 | 7.54E-07 | |
100000 | Case I | 74 | 291 | 7.1551 | 8.21E-07 | 83 | 327 | 3.7002 | 7.04E-07 |
Case II | 21 | 80 | 0.671 | 3.61E-07 | 46 | 173 | 1.4825 | 9.75E-07 | |
Case III | 26 | 102 | 0.89984 | 6.93E-07 | 55 | 204 | 1.6728 | 8.97E-07 | |
Case IV | 44 | 176 | 2.6239 | 8.75E-07 | 52 | 196 | 1.5811 | 9.15E-07 | |
Case V | 43 | 172 | 2.2944 | 8.30E-07 | 48 | 184 | 1.5047 | 6.71E-07 | |
Case VI | 99 | 396 | 12.5198 | 3.58E-07 | 47 | 181 | 1.4726 | 8.26E-07 | |
Case VII | 111 | 443 | 12.3882 | 5.20E-07 | 69 | 272 | 2.5982 | 7.84E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 25 | 95 | 0.1329 | 6.45E-07 | 36 | 139 | 0.019135 | 6.42E-07 |
Case II | 19 | 72 | 0.014534 | 4.04E-07 | 36 | 140 | 0.018994 | 6.62E-07 | |
Case III | 22 | 86 | 0.022553 | 9.29E-07 | 47 | 175 | 0.044522 | 6.46E-07 | |
Case IV | 22 | 88 | 0.036427 | 4.00E-07 | 40 | 156 | 0.03131 | 6.54E-07 | |
Case V | 25 | 100 | 0.037173 | 4.90E-07 | 37 | 146 | 0.023349 | 7.12E-07 | |
Case VI | 41 | 164 | 0.071153 | 6.01E-07 | 36 | 143 | 0.037977 | 9.25E-07 | |
Case VII | 42 | 167 | 0.12029 | 4.55E-07 | 49 | 184 | 0.060357 | 9.87E-07 | |
5000 | Case I | 22 | 83 | 0.13573 | 6.53E-07 | 36 | 139 | 0.11871 | 6.40E-07 |
Case II | 19 | 72 | 0.11048 | 8.54E-07 | 37 | 144 | 0.088934 | 9.52E-07 | |
Case III | 25 | 98 | 0.090732 | 3.03E-07 | 51 | 189 | 0.10334 | 9.00E-07 | |
Case IV | 24 | 96 | 0.061785 | 8.38E-07 | 44 | 169 | 0.44477 | 9.18E-07 | |
Case V | 30 | 120 | 0.1862 | 4.11E-07 | 40 | 157 | 0.11434 | 6.51E-07 | |
Case VI | 54 | 216 | 0.33113 | 9.45E-07 | 41 | 160 | 0.10301 | 8.14E-07 | |
Case VII | 69 | 275 | 0.5637 | 3.29E-07 | 47 | 180 | 0.107 | 9.84E-07 | |
10000 | Case I | 27 | 103 | 0.14553 | 4.01E-07 | 36 | 139 | 0.1347 | 7.33E-07 |
Case II | 20 | 76 | 0.086196 | 3.64E-07 | 38 | 147 | 0.15397 | 8.23E-07 | |
Case III | 25 | 98 | 0.20935 | 8.75E-07 | 47 | 177 | 0.17983 | 7.72E-07 | |
Case IV | 24 | 96 | 0.19624 | 5.28E-07 | 44 | 170 | 0.19929 | 7.87E-07 | |
Case V | 35 | 140 | 0.1977 | 6.41E-07 | 42 | 163 | 0.18619 | 9.45E-07 | |
Case VI | 60 | 240 | 0.65802 | 4.12E-07 | 49 | 185 | 0.47874 | 7.04E-07 | |
Case VII | 84 | 335 | 0.96443 | 8.09E-07 | 43 | 169 | 0.1934 | 7.22E-07 | |
50000 | Case I | 55 | 215 | 2.6998 | 9.96E-07 | 65 | 255 | 1.3087 | 8.37E-07 |
Case II | 20 | 76 | 0.2954 | 8.35E-07 | 48 | 179 | 0.92835 | 6.84E-07 | |
Case III | 27 | 106 | 0.47985 | 8.73E-07 | 67 | 240 | 0.92921 | 6.31E-07 | |
Case IV | 41 | 164 | 1.7421 | 9.71E-07 | 47 | 181 | 0.72302 | 6.44E-07 | |
Case V | 36 | 144 | 1.5835 | 8.46E-07 | 45 | 174 | 0.86921 | 7.83E-07 | |
Case VI | 79 | 316 | 4.0512 | 6.61E-07 | 54 | 201 | 0.94527 | 9.68E-07 | |
Case VII | 103 | 411 | 6.5137 | 7.57E-07 | 52 | 204 | 0.79431 | 7.54E-07 | |
100000 | Case I | 74 | 291 | 7.1551 | 8.21E-07 | 83 | 327 | 3.7002 | 7.04E-07 |
Case II | 21 | 80 | 0.671 | 3.61E-07 | 46 | 173 | 1.4825 | 9.75E-07 | |
Case III | 26 | 102 | 0.89984 | 6.93E-07 | 55 | 204 | 1.6728 | 8.97E-07 | |
Case IV | 44 | 176 | 2.6239 | 8.75E-07 | 52 | 196 | 1.5811 | 9.15E-07 | |
Case V | 43 | 172 | 2.2944 | 8.30E-07 | 48 | 184 | 1.5047 | 6.71E-07 | |
Case VI | 99 | 396 | 12.5198 | 3.58E-07 | 47 | 181 | 1.4726 | 8.26E-07 | |
Case VII | 111 | 443 | 12.3882 | 5.20E-07 | 69 | 272 | 2.5982 | 7.84E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 17 | 68 | 0.070165 | 3.66E-07 | 37 | 148 | 0.086194 | 8.53E-07 |
Case II | 17 | 68 | 0.019243 | 3.42E-07 | 37 | 148 | 0.049573 | 8.20E-07 | |
Case III | 17 | 68 | 0.022663 | 3.01E-07 | 37 | 148 | 0.051928 | 7.22E-07 | |
Case IV | 16 | 64 | 0.016058 | 6.87E-07 | 36 | 144 | 0.074625 | 8.24E-07 | |
Case V | 16 | 64 | 0.028711 | 5.52E-07 | 36 | 144 | 0.080704 | 6.61E-07 | |
Case VI | 16 | 64 | 0.036264 | 3.25E-07 | 35 | 140 | 0.098138 | 6.50E-07 | |
Case VII | 17 | 68 | 0.029906 | 3.02E-07 | 37 | 148 | 0.057573 | 7.28E-07 | |
5000 | Case I | 17 | 68 | 0.11976 | 8.21E-07 | 39 | 156 | 0.16301 | 6.87E-07 |
Case II | 17 | 68 | 0.13738 | 7.66E-07 | 39 | 156 | 0.1438 | 6.61E-07 | |
Case III | 17 | 68 | 0.070333 | 6.75E-07 | 38 | 152 | 0.14908 | 9.71E-07 | |
Case IV | 17 | 68 | 0.097123 | 4.62E-07 | 38 | 152 | 0.16691 | 6.64E-07 | |
Case V | 17 | 68 | 0.070428 | 3.71E-07 | 37 | 148 | 0.15817 | 8.88E-07 | |
Case VI | 16 | 64 | 0.065808 | 7.29E-07 | 36 | 144 | 0.36454 | 8.73E-07 | |
Case VII | 17 | 68 | 0.089469 | 6.80E-07 | 38 | 152 | 0.19723 | 9.77E-07 | |
10000 | Case I | 18 | 72 | 0.1274 | 3.48E-07 | 39 | 156 | 0.35497 | 9.72E-07 |
Case II | 18 | 72 | 0.12939 | 3.25E-07 | 39 | 156 | 0.50582 | 9.35E-07 | |
Case III | 17 | 68 | 0.13873 | 9.55E-07 | 39 | 156 | 0.46728 | 8.24E-07 | |
Case IV | 17 | 68 | 0.13388 | 6.54E-07 | 38 | 152 | 0.2839 | 9.40E-07 | |
Case V | 17 | 68 | 0.20628 | 5.24E-07 | 38 | 152 | 0.27388 | 7.54E-07 | |
Case VI | 17 | 68 | 0.16002 | 3.09E-07 | 37 | 148 | 0.56098 | 7.41E-07 | |
Case VII | 17 | 68 | 0.16743 | 9.63E-07 | 39 | 156 | 0.46017 | 8.28E-07 | |
50000 | Case I | 18 | 70 | 0.74334 | 0 | 40 | 158 | 1.2103 | 0 |
Case II | 18 | 70 | 0.54759 | 0 | 40 | 158 | 1.4011 | 0 | |
Case III | 18 | 70 | 0.46758 | 0 | 39 | 154 | 1.3023 | 0 | |
Case IV | 18 | 70 | 0.47821 | 0 | 39 | 154 | 1.2953 | 0 | |
Case V | 18 | 70 | 0.51731 | 0 | 38 | 150 | 1.2347 | 0 | |
Case VI | 17 | 66 | 0.52485 | 0 | 37 | 146 | 1.2817 | 0 | |
Case VII | 18 | 70 | 0.55512 | 0 | 40 | 158 | 1.3476 | 0 | |
100000 | Case I | 18 | 70 | 1.0765 | 0 | 39 | 154 | 2.4974 | 0 |
Case II | 18 | 70 | 1.3017 | 0 | 39 | 154 | 2.5376 | 0 | |
Case III | 18 | 70 | 1.2128 | 0 | 38 | 150 | 2.45 | 0 | |
Case IV | 17 | 66 | 1.2676 | 0 | 38 | 150 | 2.3559 | 0 | |
Case V | 17 | 66 | 1.1563 | 0 | 37 | 146 | 2.4861 | 0 | |
Case VI | 17 | 66 | 1.0464 | 0 | 36 | 142 | 2.2564 | 0 | |
Case VII | 18 | 70 | 1.0587 | 0 | 39 | 154 | 2.6041 | 0 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 17 | 68 | 0.070165 | 3.66E-07 | 37 | 148 | 0.086194 | 8.53E-07 |
Case II | 17 | 68 | 0.019243 | 3.42E-07 | 37 | 148 | 0.049573 | 8.20E-07 | |
Case III | 17 | 68 | 0.022663 | 3.01E-07 | 37 | 148 | 0.051928 | 7.22E-07 | |
Case IV | 16 | 64 | 0.016058 | 6.87E-07 | 36 | 144 | 0.074625 | 8.24E-07 | |
Case V | 16 | 64 | 0.028711 | 5.52E-07 | 36 | 144 | 0.080704 | 6.61E-07 | |
Case VI | 16 | 64 | 0.036264 | 3.25E-07 | 35 | 140 | 0.098138 | 6.50E-07 | |
Case VII | 17 | 68 | 0.029906 | 3.02E-07 | 37 | 148 | 0.057573 | 7.28E-07 | |
5000 | Case I | 17 | 68 | 0.11976 | 8.21E-07 | 39 | 156 | 0.16301 | 6.87E-07 |
Case II | 17 | 68 | 0.13738 | 7.66E-07 | 39 | 156 | 0.1438 | 6.61E-07 | |
Case III | 17 | 68 | 0.070333 | 6.75E-07 | 38 | 152 | 0.14908 | 9.71E-07 | |
Case IV | 17 | 68 | 0.097123 | 4.62E-07 | 38 | 152 | 0.16691 | 6.64E-07 | |
Case V | 17 | 68 | 0.070428 | 3.71E-07 | 37 | 148 | 0.15817 | 8.88E-07 | |
Case VI | 16 | 64 | 0.065808 | 7.29E-07 | 36 | 144 | 0.36454 | 8.73E-07 | |
Case VII | 17 | 68 | 0.089469 | 6.80E-07 | 38 | 152 | 0.19723 | 9.77E-07 | |
10000 | Case I | 18 | 72 | 0.1274 | 3.48E-07 | 39 | 156 | 0.35497 | 9.72E-07 |
Case II | 18 | 72 | 0.12939 | 3.25E-07 | 39 | 156 | 0.50582 | 9.35E-07 | |
Case III | 17 | 68 | 0.13873 | 9.55E-07 | 39 | 156 | 0.46728 | 8.24E-07 | |
Case IV | 17 | 68 | 0.13388 | 6.54E-07 | 38 | 152 | 0.2839 | 9.40E-07 | |
Case V | 17 | 68 | 0.20628 | 5.24E-07 | 38 | 152 | 0.27388 | 7.54E-07 | |
Case VI | 17 | 68 | 0.16002 | 3.09E-07 | 37 | 148 | 0.56098 | 7.41E-07 | |
Case VII | 17 | 68 | 0.16743 | 9.63E-07 | 39 | 156 | 0.46017 | 8.28E-07 | |
50000 | Case I | 18 | 70 | 0.74334 | 0 | 40 | 158 | 1.2103 | 0 |
Case II | 18 | 70 | 0.54759 | 0 | 40 | 158 | 1.4011 | 0 | |
Case III | 18 | 70 | 0.46758 | 0 | 39 | 154 | 1.3023 | 0 | |
Case IV | 18 | 70 | 0.47821 | 0 | 39 | 154 | 1.2953 | 0 | |
Case V | 18 | 70 | 0.51731 | 0 | 38 | 150 | 1.2347 | 0 | |
Case VI | 17 | 66 | 0.52485 | 0 | 37 | 146 | 1.2817 | 0 | |
Case VII | 18 | 70 | 0.55512 | 0 | 40 | 158 | 1.3476 | 0 | |
100000 | Case I | 18 | 70 | 1.0765 | 0 | 39 | 154 | 2.4974 | 0 |
Case II | 18 | 70 | 1.3017 | 0 | 39 | 154 | 2.5376 | 0 | |
Case III | 18 | 70 | 1.2128 | 0 | 38 | 150 | 2.45 | 0 | |
Case IV | 17 | 66 | 1.2676 | 0 | 38 | 150 | 2.3559 | 0 | |
Case V | 17 | 66 | 1.1563 | 0 | 37 | 146 | 2.4861 | 0 | |
Case VI | 17 | 66 | 1.0464 | 0 | 36 | 142 | 2.2564 | 0 | |
Case VII | 18 | 70 | 1.0587 | 0 | 39 | 154 | 2.6041 | 0 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 9 | 36 | 0.029847 | 1.25E-07 | 14 | 56 | 0.010049 | 4.58E-07 |
Case II | 8 | 32 | 0.01614 | 7.06E-07 | 14 | 56 | 0.009322 | 3.19E-07 | |
Case III | 7 | 28 | 0.036217 | 2.03E-07 | 11 | 44 | 0.014851 | 6.44E-07 | |
Case IV | 8 | 32 | 0.00896 | 1.86E-07 | 15 | 60 | 0.009756 | 2.52E-07 | |
Case V | 9 | 36 | 0.012299 | 2.91E-07 | 15 | 60 | 0.014388 | 3.91E-07 | |
Case VI | 9 | 35 | 0.012932 | 3.19E-07 | 15 | 59 | 0.01453 | 2.82E-07 | |
Case VII | 9 | 36 | 0.015981 | 3.43E-07 | 14 | 56 | 0.017579 | 3.00E-07 | |
5000 | Case I | 9 | 36 | 0.040232 | 2.79E-07 | 15 | 60 | 0.06212 | 2.57E-07 |
Case II | 9 | 36 | 0.038549 | 1.30E-07 | 14 | 56 | 0.035553 | 7.13E-07 | |
Case III | 7 | 28 | 0.02036 | 4.53E-07 | 12 | 48 | 0.037788 | 3.61E-07 | |
Case IV | 8 | 32 | 0.025654 | 4.15E-07 | 15 | 60 | 0.035425 | 5.64E-07 | |
Case V | 9 | 36 | 0.026546 | 6.51E-07 | 15 | 60 | 0.12771 | 8.73E-07 | |
Case VI | 9 | 35 | 0.096229 | 7.14E-07 | 15 | 59 | 0.044662 | 6.31E-07 | |
Case VII | 9 | 36 | 0.093227 | 7.84E-07 | 14 | 56 | 0.053641 | 6.71E-07 | |
10000 | Case I | 9 | 36 | 0.054105 | 3.95E-07 | 15 | 60 | 0.055328 | 3.64E-07 |
Case II | 9 | 36 | 0.10633 | 1.84E-07 | 15 | 60 | 0.10212 | 2.53E-07 | |
Case III | 7 | 28 | 0.037857 | 6.41E-07 | 12 | 48 | 0.066777 | 5.11E-07 | |
Case IV | 8 | 32 | 0.082416 | 5.87E-07 | 15 | 60 | 0.071481 | 7.98E-07 | |
Case V | 9 | 36 | 0.18582 | 9.20E-07 | 16 | 64 | 0.059125 | 3.10E-07 | |
Case VI | 10 | 39 | 0.070373 | 8.34E-08 | 15 | 59 | 0.081851 | 8.93E-07 | |
Case VII | 10 | 40 | 0.071963 | 9.12E-08 | 14 | 56 | 0.31755 | 9.38E-07 | |
50000 | Case I | 9 | 36 | 0.36461 | 8.84E-07 | 15 | 60 | 0.32342 | 8.14E-07 |
Case II | 9 | 36 | 0.27196 | 4.12E-07 | 15 | 60 | 0.3605 | 5.66E-07 | |
Case III | 8 | 32 | 0.25501 | 1.18E-07 | 13 | 52 | 0.22338 | 2.87E-07 | |
Case IV | 9 | 36 | 0.22228 | 1.08E-07 | 16 | 64 | 0.26331 | 4.48E-07 | |
Case V | 10 | 40 | 0.25618 | 1.70E-07 | 16 | 64 | 0.27305 | 6.94E-07 | |
Case VI | 10 | 39 | 0.27278 | 1.87E-07 | 16 | 63 | 0.28175 | 5.01E-07 | |
Case VII | 10 | 40 | 0.22836 | 2.04E-07 | 15 | 60 | 0.75345 | 5.27E-07 | |
100000 | Case I | 10 | 40 | 0.57002 | 1.03E-07 | 16 | 64 | 0.56535 | 2.89E-07 |
Case II | 9 | 36 | 0.34715 | 5.83E-07 | 15 | 60 | 0.66238 | 8.01E-07 | |
Case III | 8 | 32 | 0.41892 | 1.67E-07 | 13 | 52 | 0.45765 | 4.06E-07 | |
Case IV | 9 | 36 | 0.34291 | 1.53E-07 | 16 | 64 | 0.68567 | 6.34E-07 | |
Case V | 10 | 40 | 0.53349 | 2.40E-07 | 16 | 64 | 0.51067 | 9.81E-07 | |
Case VI | 10 | 39 | 0.35763 | 2.64E-07 | 16 | 63 | 0.5497 | 7.09E-07 | |
Case VII | 10 | 40 | 0.55468 | 2.88E-07 | 15 | 60 | 0.6995 | 7.46E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 9 | 36 | 0.029847 | 1.25E-07 | 14 | 56 | 0.010049 | 4.58E-07 |
Case II | 8 | 32 | 0.01614 | 7.06E-07 | 14 | 56 | 0.009322 | 3.19E-07 | |
Case III | 7 | 28 | 0.036217 | 2.03E-07 | 11 | 44 | 0.014851 | 6.44E-07 | |
Case IV | 8 | 32 | 0.00896 | 1.86E-07 | 15 | 60 | 0.009756 | 2.52E-07 | |
Case V | 9 | 36 | 0.012299 | 2.91E-07 | 15 | 60 | 0.014388 | 3.91E-07 | |
Case VI | 9 | 35 | 0.012932 | 3.19E-07 | 15 | 59 | 0.01453 | 2.82E-07 | |
Case VII | 9 | 36 | 0.015981 | 3.43E-07 | 14 | 56 | 0.017579 | 3.00E-07 | |
5000 | Case I | 9 | 36 | 0.040232 | 2.79E-07 | 15 | 60 | 0.06212 | 2.57E-07 |
Case II | 9 | 36 | 0.038549 | 1.30E-07 | 14 | 56 | 0.035553 | 7.13E-07 | |
Case III | 7 | 28 | 0.02036 | 4.53E-07 | 12 | 48 | 0.037788 | 3.61E-07 | |
Case IV | 8 | 32 | 0.025654 | 4.15E-07 | 15 | 60 | 0.035425 | 5.64E-07 | |
Case V | 9 | 36 | 0.026546 | 6.51E-07 | 15 | 60 | 0.12771 | 8.73E-07 | |
Case VI | 9 | 35 | 0.096229 | 7.14E-07 | 15 | 59 | 0.044662 | 6.31E-07 | |
Case VII | 9 | 36 | 0.093227 | 7.84E-07 | 14 | 56 | 0.053641 | 6.71E-07 | |
10000 | Case I | 9 | 36 | 0.054105 | 3.95E-07 | 15 | 60 | 0.055328 | 3.64E-07 |
Case II | 9 | 36 | 0.10633 | 1.84E-07 | 15 | 60 | 0.10212 | 2.53E-07 | |
Case III | 7 | 28 | 0.037857 | 6.41E-07 | 12 | 48 | 0.066777 | 5.11E-07 | |
Case IV | 8 | 32 | 0.082416 | 5.87E-07 | 15 | 60 | 0.071481 | 7.98E-07 | |
Case V | 9 | 36 | 0.18582 | 9.20E-07 | 16 | 64 | 0.059125 | 3.10E-07 | |
Case VI | 10 | 39 | 0.070373 | 8.34E-08 | 15 | 59 | 0.081851 | 8.93E-07 | |
Case VII | 10 | 40 | 0.071963 | 9.12E-08 | 14 | 56 | 0.31755 | 9.38E-07 | |
50000 | Case I | 9 | 36 | 0.36461 | 8.84E-07 | 15 | 60 | 0.32342 | 8.14E-07 |
Case II | 9 | 36 | 0.27196 | 4.12E-07 | 15 | 60 | 0.3605 | 5.66E-07 | |
Case III | 8 | 32 | 0.25501 | 1.18E-07 | 13 | 52 | 0.22338 | 2.87E-07 | |
Case IV | 9 | 36 | 0.22228 | 1.08E-07 | 16 | 64 | 0.26331 | 4.48E-07 | |
Case V | 10 | 40 | 0.25618 | 1.70E-07 | 16 | 64 | 0.27305 | 6.94E-07 | |
Case VI | 10 | 39 | 0.27278 | 1.87E-07 | 16 | 63 | 0.28175 | 5.01E-07 | |
Case VII | 10 | 40 | 0.22836 | 2.04E-07 | 15 | 60 | 0.75345 | 5.27E-07 | |
100000 | Case I | 10 | 40 | 0.57002 | 1.03E-07 | 16 | 64 | 0.56535 | 2.89E-07 |
Case II | 9 | 36 | 0.34715 | 5.83E-07 | 15 | 60 | 0.66238 | 8.01E-07 | |
Case III | 8 | 32 | 0.41892 | 1.67E-07 | 13 | 52 | 0.45765 | 4.06E-07 | |
Case IV | 9 | 36 | 0.34291 | 1.53E-07 | 16 | 64 | 0.68567 | 6.34E-07 | |
Case V | 10 | 40 | 0.53349 | 2.40E-07 | 16 | 64 | 0.51067 | 9.81E-07 | |
Case VI | 10 | 39 | 0.35763 | 2.64E-07 | 16 | 63 | 0.5497 | 7.09E-07 | |
Case VII | 10 | 40 | 0.55468 | 2.88E-07 | 15 | 60 | 0.6995 | 7.46E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 11 | 38 | 0.032713 | 3.88E-07 | 16 | 58 | 0.00921 | 9.66E-07 |
Case II | 11 | 38 | 0.010107 | 3.88E-07 | 16 | 58 | 0.00733 | 9.66E-07 | |
Case III | 11 | 39 | 0.0097 | 3.88E-07 | 16 | 59 | 0.010495 | 9.66E-07 | |
Case IV | 11 | 39 | 0.008542 | 3.88E-07 | 16 | 59 | 0.013631 | 9.66E-07 | |
Case V | 11 | 39 | 0.010247 | 3.88E-07 | 16 | 59 | 0.009248 | 9.66E-07 | |
Case VI | 11 | 39 | 0.014019 | 3.88E-07 | 16 | 59 | 0.01325 | 9.66E-07 | |
Case VII | 11 | 39 | 0.010456 | 3.88E-07 | 16 | 59 | 0.015507 | 9.66E-07 | |
5000 | Case I | 8 | 29 | 0.029519 | 8.46E-07 | 12 | 46 | 0.03298 | 6.18E-07 |
Case II | 8 | 30 | 0.028146 | 8.46E-07 | 12 | 46 | 0.028464 | 6.18E-07 | |
Case III | 8 | 30 | 0.031133 | 8.46E-07 | 12 | 46 | 0.026699 | 6.18E-07 | |
Case IV | 8 | 30 | 0.032266 | 8.46E-07 | 12 | 46 | 0.065305 | 6.18E-07 | |
Case V | 8 | 30 | 0.043717 | 8.46E-07 | 12 | 46 | 0.033667 | 6.18E-07 | |
Case VI | 8 | 30 | 0.075426 | 8.46E-07 | 12 | 46 | 0.032206 | 6.18E-07 | |
Case VII | 8 | 30 | 0.043783 | 8.46E-07 | 12 | 46 | 0.052994 | 6.18E-07 | |
10000 | Case I | 7 | 26 | 0.070454 | 5.16E-07 | 9 | 35 | 0.045216 | 7.70E-07 |
Case II | 7 | 27 | 0.053641 | 5.16E-07 | 9 | 35 | 0.059089 | 7.70E-07 | |
Case III | 7 | 27 | 0.094187 | 5.16E-07 | 9 | 35 | 0.045507 | 7.70E-07 | |
Case IV | 7 | 27 | 0.20473 | 5.16E-07 | 9 | 35 | 0.074929 | 7.70E-07 | |
Case V | 7 | 27 | 0.071282 | 5.16E-07 | 9 | 35 | 0.075532 | 7.70E-07 | |
Case VI | 7 | 27 | 0.064401 | 5.16E-07 | 9 | 35 | 0.065486 | 7.70E-07 | |
Case VII | 7 | 27 | 0.098105 | 5.16E-07 | 9 | 35 | 0.055328 | 7.70E-07 | |
50000 | Case I | 6 | 24 | 0.22768 | 1.49E-07 | 12 | 48 | 0.35733 | 5.55E-07 |
Case II | 6 | 24 | 0.28215 | 1.49E-07 | 12 | 48 | 0.34089 | 5.55E-07 | |
Case III | 6 | 24 | 0.72157 | 1.49E-07 | 12 | 48 | 0.30864 | 5.55E-07 | |
Case IV | 6 | 24 | 0.53086 | 1.49E-07 | 12 | 48 | 0.37903 | 5.55E-07 | |
Case V | 6 | 24 | 0.39711 | 1.49E-07 | 12 | 48 | 0.34614 | 5.55E-07 | |
Case VI | 6 | 24 | 0.48753 | 1.49E-07 | 12 | 48 | 0.41103 | 5.55E-07 | |
Case VII | 6 | 24 | 0.29061 | 1.49E-07 | 12 | 48 | 0.33605 | 5.55E-07 | |
100000 | Case I | 6 | 24 | 0.66013 | 6.95E-07 | 6 | 24 | 0.43192 | 5.77E-07 |
Case II | 6 | 24 | 0.60689 | 6.95E-07 | 6 | 24 | 0.30724 | 5.77E-07 | |
Case III | 6 | 24 | 0.78423 | 6.95E-07 | 6 | 24 | 0.46109 | 5.77E-07 | |
Case IV | 6 | 24 | 0.7826 | 6.95E-07 | 6 | 24 | 0.37262 | 5.77E-07 | |
Case V | 6 | 24 | 0.70311 | 6.95E-07 | 6 | 24 | 0.40775 | 5.77E-07 | |
Case VI | 6 | 24 | 0.9559 | 6.95E-07 | 6 | 24 | 0.38522 | 5.77E-07 | |
Case VII | 6 | 24 | 0.68726 | 6.95E-07 | 6 | 24 | 0.48134 | 5.77E-07 |
INER. ALGO | ALGO. | ||||||||
DIM | INP | NI | NF | CPU | NORM | NI | NF | CPU | NORM |
1000 | Case I | 11 | 38 | 0.032713 | 3.88E-07 | 16 | 58 | 0.00921 | 9.66E-07 |
Case II | 11 | 38 | 0.010107 | 3.88E-07 | 16 | 58 | 0.00733 | 9.66E-07 | |
Case III | 11 | 39 | 0.0097 | 3.88E-07 | 16 | 59 | 0.010495 | 9.66E-07 | |
Case IV | 11 | 39 | 0.008542 | 3.88E-07 | 16 | 59 | 0.013631 | 9.66E-07 | |
Case V | 11 | 39 | 0.010247 | 3.88E-07 | 16 | 59 | 0.009248 | 9.66E-07 | |
Case VI | 11 | 39 | 0.014019 | 3.88E-07 | 16 | 59 | 0.01325 | 9.66E-07 | |
Case VII | 11 | 39 | 0.010456 | 3.88E-07 | 16 | 59 | 0.015507 | 9.66E-07 | |
5000 | Case I | 8 | 29 | 0.029519 | 8.46E-07 | 12 | 46 | 0.03298 | 6.18E-07 |
Case II | 8 | 30 | 0.028146 | 8.46E-07 | 12 | 46 | 0.028464 | 6.18E-07 | |
Case III | 8 | 30 | 0.031133 | 8.46E-07 | 12 | 46 | 0.026699 | 6.18E-07 | |
Case IV | 8 | 30 | 0.032266 | 8.46E-07 | 12 | 46 | 0.065305 | 6.18E-07 | |
Case V | 8 | 30 | 0.043717 | 8.46E-07 | 12 | 46 | 0.033667 | 6.18E-07 | |
Case VI | 8 | 30 | 0.075426 | 8.46E-07 | 12 | 46 | 0.032206 | 6.18E-07 | |
Case VII | 8 | 30 | 0.043783 | 8.46E-07 | 12 | 46 | 0.052994 | 6.18E-07 | |
10000 | Case I | 7 | 26 | 0.070454 | 5.16E-07 | 9 | 35 | 0.045216 | 7.70E-07 |
Case II | 7 | 27 | 0.053641 | 5.16E-07 | 9 | 35 | 0.059089 | 7.70E-07 | |
Case III | 7 | 27 | 0.094187 | 5.16E-07 | 9 | 35 | 0.045507 | 7.70E-07 | |
Case IV | 7 | 27 | 0.20473 | 5.16E-07 | 9 | 35 | 0.074929 | 7.70E-07 | |
Case V | 7 | 27 | 0.071282 | 5.16E-07 | 9 | 35 | 0.075532 | 7.70E-07 | |
Case VI | 7 | 27 | 0.064401 | 5.16E-07 | 9 | 35 | 0.065486 | 7.70E-07 | |
Case VII | 7 | 27 | 0.098105 | 5.16E-07 | 9 | 35 | 0.055328 | 7.70E-07 | |
50000 | Case I | 6 | 24 | 0.22768 | 1.49E-07 | 12 | 48 | 0.35733 | 5.55E-07 |
Case II | 6 | 24 | 0.28215 | 1.49E-07 | 12 | 48 | 0.34089 | 5.55E-07 | |
Case III | 6 | 24 | 0.72157 | 1.49E-07 | 12 | 48 | 0.30864 | 5.55E-07 | |
Case IV | 6 | 24 | 0.53086 | 1.49E-07 | 12 | 48 | 0.37903 | 5.55E-07 | |
Case V | 6 | 24 | 0.39711 | 1.49E-07 | 12 | 48 | 0.34614 | 5.55E-07 | |
Case VI | 6 | 24 | 0.48753 | 1.49E-07 | 12 | 48 | 0.41103 | 5.55E-07 | |
Case VII | 6 | 24 | 0.29061 | 1.49E-07 | 12 | 48 | 0.33605 | 5.55E-07 | |
100000 | Case I | 6 | 24 | 0.66013 | 6.95E-07 | 6 | 24 | 0.43192 | 5.77E-07 |
Case II | 6 | 24 | 0.60689 | 6.95E-07 | 6 | 24 | 0.30724 | 5.77E-07 | |
Case III | 6 | 24 | 0.78423 | 6.95E-07 | 6 | 24 | 0.46109 | 5.77E-07 | |
Case IV | 6 | 24 | 0.7826 | 6.95E-07 | 6 | 24 | 0.37262 | 5.77E-07 | |
Case V | 6 | 24 | 0.70311 | 6.95E-07 | 6 | 24 | 0.40775 | 5.77E-07 | |
Case VI | 6 | 24 | 0.9559 | 6.95E-07 | 6 | 24 | 0.38522 | 5.77E-07 | |
Case VII | 6 | 24 | 0.68726 | 6.95E-07 | 6 | 24 | 0.48134 | 5.77E-07 |
[1] |
Yigui Ou, Wenjie Xu. A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021125 |
[2] |
Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030 |
[3] |
Gaohang Yu. A derivative-free method for solving large-scale nonlinear systems of equations. Journal of Industrial and Management Optimization, 2010, 6 (1) : 149-160. doi: 10.3934/jimo.2010.6.149 |
[4] |
Dong-Hui Li, Xiao-Lin Wang. A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinear equations. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 71-82. doi: 10.3934/naco.2011.1.71 |
[5] |
A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial and Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319 |
[6] |
Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with self-correcting geometry for derivative-free optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 169-184. doi: 10.3934/naco.2015.5.169 |
[7] |
Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial and Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421 |
[8] |
Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial and Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117 |
[9] |
Ashif Mustafa, Manideepa Saha. A generalized projection iterative method for solving non-singular linear systems. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022009 |
[10] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[11] |
Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017 |
[12] |
Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021022 |
[13] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems and Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Ojen Kumar Narain. Inertial Mann-Type iterative method for solving split monotone variational inclusion problem with applications. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022075 |
[16] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[17] |
Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056 |
[18] |
Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045 |
[19] |
Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201 |
[20] |
Jun Takaki, Nobuo Yamashita. A derivative-free trust-region algorithm for unconstrained optimization with controlled error. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 117-145. doi: 10.3934/naco.2011.1.117 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]