We obtain the improved results of the upper and lower bounds for the spectral radius of a nonnegative tensor by its majorization matrix's digraph. Numerical examples are also given to show that our results are significantly superior to the results of related literature.
Citation: |
[1] | K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6 (2008), 507-520. doi: 10.4310/CMS.2008.v6.n2.a12. |
[2] | S. Friedland, S. Gaubert and L. Han, Peerron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438 (2013), 738-749. doi: 10.1016/j.laa.2011.02.042. |
[3] | J. He and T. Huang, Upper bound for the lagest z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114. doi: 10.1016/j.aml.2014.07.012. |
[4] | S. L. Hu, Z. H. Huang, C. Ling and L. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50 (2013), 508-531. doi: 10.1016/j.jsc.2012.10.001. |
[5] | L. H. Lim, Singular values and eigenvalues of tensors: A Variational approach, CAMSAP '05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, (2005), 129–132. |
[6] | C. Li, Y. Wang, J. Yi and Y. Li, Bounds for the spectral radius of nonnegative tensor, J. Ind. Manag. Optim., 12 (2016), 975-990. doi: 10.3934/jimo.2016.12.975. |
[7] | L. Li and C. Li, New bounds for the spectral radius for nonnegative tensors, J. Inequal. Appl., 166 (2015), 1-9. doi: 10.1186/s13660-015-0689-1. |
[8] | W. Li and M. Ng, Some bounds for the spectral radius of nonnegative tensors, Numer. Math., 130 (2015), 315-335. doi: 10.1007/s00211-014-0666-5. |
[9] | M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl, 31 (2009), 1090-1099. doi: 10.1137/09074838X. |
[10] | K. J. Pearson, Essentially positive tensors, Int. J. Algebra, 4 (2010), 421-427. |
[11] | L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007. |
[12] | L. Qi, W. Sun and Y. Wang, Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526. doi: 10.1007/s11464-007-0031-4. |
[13] | L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), 1363-1377. doi: 10.1016/j.jmaa.2006.02.071. |
[14] | L. Qi, Y. Wang and E. Wu, D-eigenvalues of diffusion kurtosis tensors, J. Comput. Appl. Math., 221 (2008), 150-157. doi: 10.1016/j.cam.2007.10.012. |
[15] | A. Roger and R. Charles, Matrix Analysis, The People's Posts and Telecommunications Press, 2007. |
[16] | T. Schultz and H. Seidel, Estimating crossing fibers: A tensor decomposition approach, IEEE Transactions on Visualization and Computer Graphics, 14 (2008), 1635-1642. doi: 10.1109/TVCG.2008.128. |
[17] | Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601. doi: 10.1002/nla.633. |
[18] | Y. Yang and Q. Yang, Further results for perron-frobenius theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl., 31 (2010), 2517-2530. doi: 10.1137/090778766. |