\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Project portfolio selection based on multi-project synergy

  • * Corresponding author: Moses Olabhele Esangbedo

    * Corresponding author: Moses Olabhele Esangbedo 
Abstract / Introduction Full Text(HTML) Figure(6) / Table(12) Related Papers Cited by
  • To date, the selection of a project portfolio that maximises the decision-making outcome remains essential. However, existing research on project synergy has mainly focused on two projects, while there are multiple projects in some cases. Two kinds of synergies among multiple projects are proposed. First, multiple projects must be selected together, in order to produce synergy. Second, some projects depend on synergy with other projects, leading to a synergetic increase in performance. Furthermore, we present strategic synergy, with benefits, resources, and technology, which is quantified for a procurement project concerning a COVID-19 pandemic recovery plan. A design structure matrix is used to describe the technology diffusion among the projects. Then, strategic alignment is utilised to measure the strategic contribution of projects. Next, a portfolio selection model considering uncertainty is established, based on the strategic utility. Finally, our results indicate that selecting projects considering multi-project synergy is more advantageous.

    Mathematics Subject Classification: Primary: 90b50; Secondary: 90C70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Relationships between four synergy types

    Figure 2.  Relationships between four synergy types (type II)

    Figure 3.  Benefit synergy; lower triangular matrix

    Figure 4.  Technology diffusion relationships

    Figure 5.  Three strategic contribution solution scenarios

    Figure 6.  Technology diffusion relationship

    Table 1.  Research Trends on Synergy in Project Portfolio

    Related Works Aspects Type of Synergy Strategic Utility Goals Uncertainty
    Benefit/ Resource/ Technology Strategy Two Projects Multiple projects
    [8,10,14,16,24,25,28] $ \times $ $ \times $ $ \times $ $ \times $
    [6,32,34,50,53,48,18,11,52,55] $ \times $ $ \times $ $ \times $ $ \times $ $ \times $
    [1,39,48] $ \times $ $ \times $ $ \times $
    [8] $ \times $ $ \times $
    This paper
     | Show Table
    DownLoad: CSV

    Table 2.  Strategic indicators

    Overall goal First-level indicators, $ B_i $ (Local weights) Second-level indicators, $ i $ (Local weight)
    Non- economic indicators 1 Development potential (0.54) 1, Market demand [7] (0.57)
    2, Brand lead [45] (0.29)
    3, Customer satisfaction [7] (0.14)
    2 Technical advantages (0.30) 4, Product technical strength [45] (0.12)
    5, Product innovation and patent [45,51] (0.43)
    6, Product life-cycle [51] (0.29)
    7, Product market orientation [45] (0.16)
    3 Social reputation (0.16) 8, Corporate social image recognition [7] (0.56)
    9, Corporate social responsibility realisation [51] (0.32)
    10, Corporate social appeal [51] (0.12)
     | Show Table
    DownLoad: CSV

    Table 3.  Fuzzy data of benefit, resources, and success probability

    Project ${{v}_{i}}$ $r_{i}^{1}$ $r_{i}^{2}$ $r_{i}^{3}$ ${{p}_{i}}$
    1 (40,50,62.5) (4.6,5.2,7.2) (5.4,6.2,8.2) (5,6,8.2) (0.39,0.45,0.505)
    2 (20,22,32) (2.8,3.1,4,1) (3.6,4.3,5.07) (1.6,2,3.1) (0.64,0.72,0.86)
    3 (35,42,52) (4.4,5,6.1) (5.2,6.5,8.16) (4.2,5,7.2) (0.43,0.51,0.61)
    4 (20,26,31) (1.5,2.1,3.1) (2.6,3.3,4.07) (3.2,4.1,5.1) (0.63,0.7,0.81)
    5 (35,40,46.5) (4.3,5,6.1) (4.12,5,6.1) (3.4,4.1,5.1) (0.65,0.7,0.81)
    6 (55,60,66.25) (6.8,7.5,9.2) (7,8,10.2) (6,7.2,8.09) (0.39,0.45,0.56)
    7 (32,36,41) (2.6,3.8,5.1) (4,2,5,6.1) (3.3,3.6.4.04) (0.43,0.51,0.61)
    8 (28,30,36.25) (2.64,3.1,4.1) (2.8,3.2,4.09) (2.78,3.8,5.1) (0.61,0.69,0.87)
    9 (32,36,41) (2.9.3.5,4.05) (2.6,3.2,5.2) (3.1,3.7,4.03) (0.58,0.64,0.76)
    10 (30,37,47) (2.6,3.8,5.1) (2.54,3.2,5.2) (3.2,3.7,5.14) (0.54,0.62,0.71)
     | Show Table
    DownLoad: CSV

    Table 4.  Basic data of projects

    Project 1 2 3 4 5 6 7 8 9 10
    $ {{v}_{i}} $ 60 30 50 30 45 65 40 35 40 45
    $ r_{i}^{1} $ 7 4 6 3 6 9 5 4 4 5
    $ r_{i}^{2} $ 8 5 8 4 6 10 6 4 5 4
    $ r_{i}^{3} $ 8 3 7 5 5 8 4 5 4 5
    $ {{p}_{i}} $ 0.5 0.85 0.6 0.8 0.8 0.55 0.6 0.85 0.75 0.7
    $ {{s}_{i}} $ 4.41 3.52 4.31 3.63 4.13 4.56 3.09 3.74 3.97 3.32
     | Show Table
    DownLoad: CSV

    Table 5.  Strategic fuzzy data

    Project $ {{B}_{1}} $ $ {{B}_{2}} $ $ {{B}_{3}} $ $ S $
    1 (4.3, 4.5, 4.7) (4.5, 4.7, 4.9) (4.55, 4.75, 4.95) (4.4, 4.6, 4.8)
    2 (3.4, 3.8, 4.3) (3.6, 3.9, 4.7) (3.65, 4.24, 4.8) (3.5, 3.9, 4.5)
    3 (4.1, 4.75, 4.94) (4.4, 4.85, 4.96) (4.6625, 4.875, 4.965) (4.28, 4, 8, 4.95)
    4 (3.4, 3.7, 4.3) (3.7, 4.3, 4.7) (4.15, 4.45, 4.8) (3.61, 4, 4, 5)
    5 (4.1, 4.45, 4.89) (4.2, 4.6, 4.92) (4, 4.5, 4.9) (4.11, 4.5, 4.9)
    6 (4.5, 4.88, 5) (4, 6, 4.92, 5) (4.56, 4.93, 5) (4.54, 4.9, 5)
    7 (2.8, 3, 3.4) (3.2, 3.4, 3.8) (3.8, 4.125, 4.65) (3.08, 3.3, 3.72)
    8 (3.5, 3.8, 4.4) (3.7, 4.4, 4.8) (4.375, 4.55, 4.9) (3.7, 4.1, 4.6)
    9 (4, 4.45, 4.6) (3.8, 4.55, 4.8) (4, 4.7, 4.85) (3.94, 4.52, 4.7)
    10 (3.2, 3.4, 3.8) (3.5, 3.8, 4.4) (3.325, 3.65, 4.55) (3.31, 3.56, 4.1)
    target (4, 4.2, 4.5) (4.2, 4.4, 4.6) (3.625, 3,825, 4.3125) (4, 4.2, 4.5)
     | Show Table
    DownLoad: CSV

    Table 6.  Strategic contribution distance and its effect

    Project Distance $ 1+{{d}_{(\widetilde{I}, \widetilde{G})}} $ Effect
    1 0.3707 1.3707 lead
    2 -0.3083 0.6917 lag
    3 0.4765 1.4765 lead
    4 -0.2501 0.7499 lag
    5 0.3027 1.3027 lead
    6 0.587 1.587 lead
    7 -0.8672 0.1328 lag
    8 -0.1708 0.8292 lag
    9 0.1309 1.1309 lead
    10 -0.4433 0.5567 lag
     | Show Table
    DownLoad: CSV

    Table 7.  Result of benefit synergy

    Results Benefit synergy relationship
    1, 2 1, 6 2, 4 3, 9 6, 8 1, 2, 5 1,6, 7 1, 6, 7, 9 1,6, 7, 9, 10 4, 5, 8
    15 10 8 11 12 18 16 4 3 13
     | Show Table
    DownLoad: CSV

    Table 8.  Result of resource synergy

    Result Resource synergy relationship
    $ r^1 $ 1, 4 2,6 4, 8 5, 6 1, 2, 9 4, 6, 7 4, 6, 7, 9 4, 6, 7, 9, 10
    1 2 1 1 2 2 1 1.5
    $ r^2 $ 2, 3 3, 5 3, 6 6, 10 1, 2, 5 1, 2, 4, 5 3, 4, 7 ,8
    2 2 2 3 1 2 2.5
    $ r^3 $ 3, 5 3, 10 6, 7 3, 7, 8 5, 7, 10
    1 2 2 2.5 2
     | Show Table
    DownLoad: CSV

    Table 9.  Result of strategic synergy

    Strategic synergy relationship
    Result 2, 1 6, 1 9, 3 4, 10 5, 6 1, 2, 5
    0.1 0.15 0.2 0.1 0.25 0.05
     | Show Table
    DownLoad: CSV

    Table 10.  Result of technology synergy

    Technology synergy relationship
    Result 1, 2 2, 8 8, 2 8, 9 6, 8 6, 2 5, 9 1, 2, 8 1, 2, 8, 9
    0.1 0.1 0.05 0.05 0.1 0.2 0.14 0.036 0.0162
     | Show Table
    DownLoad: CSV

    Table 11.  Results of selected project portfolio

    Selected portfolio Selected project Benefit Resource consumption Probability of success Strategic unity
    $ r^1 $ $ r^2 $ $ r^3 $
    1100110110 1, 2, 5, 6, 8, 9 232.03 29 32 30 5.09 24.86
     | Show Table
    DownLoad: CSV

    Table 12.  Selected project portfolio results

    Type of Synergy Selected portfolio Selected project Benefit Resource consumption Probability of success Strategic unity
    $ r^1 $ $ r^2 $ $ r^3 $
    Non-project synergy [12,5] 0011101011 3, 4, 5, 7, 9, 10 173.25 28 31 31 4.5 17.62
    Non-multi-project synergy [10,25] 0110110110 2, 3, 5, 6, 8, 9 217.18 30 32 31 5.04 24.08
    Multi-project synergy (this paper) 1100110110 1, 2, 5, 6, 8, 9 232.03 29 32 30 5.09 24.86
     | Show Table
    DownLoad: CSV
  • [1] B. Alvarez-García and A. Fernández-Castro, A comprehensive approach for the selection of a portfolio of interdependent projects. An application to subsidized projects in Spain, Computers & Industrial Engineering, 118 (2018), 153-159.  doi: 10.1016/j.cie.2018.02.025.
    [2] M. AnissehF. Hemmati and R. Shahraki, Best selection of project portfolio using Fuzzy AHP and Fuzzy TOPSIS, J. Engineering Management and Competitiveness, 8 (2018), 3-10. 
    [3] C. AnyaecheD. Ighravwe and T. Asokeji, Project portfolio selection of banking services using COPRAS and Fuzzy-TOPSIS, J. Project Management, (2017), 51-65.  doi: 10.5267/j.jpm.2017.6.004.
    [4] N. P. Archer and F. Ghasemzadeh, An integrated framework for project portfolio selection, International J. Project Management, 17 (1999), 207-216.  doi: 10.1016/S0263-7863(98)00032-5.
    [5] M. Ashrafi, H. Davoudpour and M. Abbassi, Developing a decision support system for R&D project portfolio selection with interdependencies, In AIP Conference Proceedings, 1499 (2012), 370-378. doi: 10.1063/1.4769016.
    [6] S. M. Avdoshin and A. A. Lifshits, Project portfolio formation based on fuzzy multi-objective model, Business Informatics, 27 (2014), 14-22. 
    [7] L. BaiH. ChenQ. Gao and W. Luo, Project portfolio selection based on synergy degree of composite system, Soft Computing, 22 (2018), 5535-5545.  doi: 10.1007/s00500-018-3277-8.
    [8] R. BhattacharyyaP. Kumar and S. Kar, Fuzzy R&D portfolio selection of interdependent projects, Comput. Math. Appl., 62 (2011), 3857-3870.  doi: 10.1016/j.camwa.2011.09.036.
    [9] A. K. BirjandiF. AkhyaniR. Sheikh and S. S. Sana, Evaluation and selecting the contractor in bidding with incomplete information using MCGDM method, Soft Computing, 23 (2019), 10569-10585.  doi: 10.1007/s00500-019-04050-y.
    [10] A. F. Carazo, Multi-criteria project portfolio selection, Handbook on Project Management and Scheduling, 2 (2015), 709-728.  doi: 10.1007/978-3-319-05915-0_3.
    [11] W. ChenD. Li and Y.-J. Liu, a novel hybrid ICA-FA algorithm for multiperiod uncertain portfolio optimization model based on multiple criteria, IEEE Transactions on Fuzzy Systems, 27 (2019), 1023-1036.  doi: 10.1109/TFUZZ.2018.2829463.
    [12] W. ChenS.-S. LiJ. Zhang and M. K. Mehlawat, A comprehensive model for fuzzy multi-objective portfolio selection based on DEA cross-efficiency model, Soft Computing, 24 (2020), 2515-2526.  doi: 10.1007/s00500-018-3595-x.
    [13] I. R. Chiang and M. A. Nunez, Strategic alignment and value maximization for IT project portfolios, Information Technology and Management, 14 (2013), 143-157.  doi: 10.1007/s10799-012-0126-9.
    [14] C. G. da SilvaJ. MeidanisA. V. MouraM. A. SouzaP. ViadannaM. R. de OliveiraM. R. de OliveiraL. H. JardimG. A. C. Lima and R. S. de Barros, An improved visualization-based approach for project portfolio selection, Computers in Human Behavior, 73 (2017), 685-696.  doi: 10.1016/j.chb.2016.12.083.
    [15] D. DaneshM. J. Ryan and A. Abbasi, Multi-criteria decision-making methods for project portfolio management: A literature review, Inter. J. Management and Decision Making, 17 (2018), 75-94.  doi: 10.1504/IJMDM.2017.10006139.
    [16] A. DebnathJ. RoyS. KarE. Zavadskas and J. Antucheviciene, a hybrid MCDM approach for strategic project portfolio selection of agro by-products, Sustainability, 9 (2017).  doi: 10.3390/su9081302.
    [17] K. F. DoernerW. J. GutjahrR. F. HartlC. Strauss and C. Stummer, Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection, European J. Oper. Res., 171 (2006), 830-841.  doi: 10.1016/j.ejor.2004.09.009.
    [18] A. M. DaryaniM. M. OmranA. MakuiE. Zavadskas and J. Antucheviciene, A novel heuristic, based on a new robustness concept, for multi-objective project portfolio optimization, Computers & Industrial Engineering, 139 (2020). 
    [19] M. O. EsangbedoS. BaiS. Mirjalili and Z. Wang, Evaluation of human resource information systems using grey ordinal pairwise comparison MCDM methods, Expert Systems with Applications, 182 (2021).  doi: 10.1016/j.eswa.2021.115151.
    [20] T. Fliedner and J. Liesiö, Adjustable robustness for multi-attribute project portfolio selection, European J. Oper. Res., 252 (2016), 931-946.  doi: 10.1016/j.ejor.2016.01.058.
    [21] S. F. GhannadpourA. R. HoseiniM. Bagherpour and E. Ahmadi, Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio, Environment, Development and Sustainability, 23 (2021), 3396-3437.  doi: 10.1007/s10668-020-00724-y.
    [22] R. GhasemiyehR. Moghdani and S. S. Sana, A hybrid artificial neural network with metaheuristic algorithms for predicting stock price, Cybernetics and Systems, 48 (2017), 365-392.  doi: 10.1080/01969722.2017.1285162.
    [23] X.-Y. Gu, R & D project dynamic investment decision-making model based on real option, Chinese Journal of Management Science, 23 (2015), 94-102.  doi: 10.16381/j.cnki.issn1003-207x.2015.07.012.
    [24] P. GuoJ. J. LiangY. M. Zhu and J. F. Hu, R&D project portfolio selection model analysis within project interdependencies context, 2008 IEEE International Conference on Industrial Engineering and Engineering Management, (2008), 994-998.  doi: 10.1109/IEEM.2008.4738019.
    [25] Y. GuoL. WangS. LiZ. Chen and Y. Cheng, Balancing strategic contributions and financial returns: A project portfolio selection model under uncertainty, Soft Computing, 22 (2018), 5547-5559.  doi: 10.1007/s00500-018-3294-7.
    [26] N. G. HallD. Z. LongJ. Qi and M. Sim, Managing underperformance risk in project portfolio selection, Oper. Res., 63 (2015), 660-675.  doi: 10.1287/opre.2015.1382.
    [27] X. Huang and T. Zhao, Project selection and scheduling with uncertain net income and investment cost, Appl. Math. Compu., 247 (2014), 61-71.  doi: 10.1016/j.amc.2014.08.082.
    [28] V. KalashnikovF. BenitaF. López-Ramos and A. Hernández-Luna, Bi-objective project portfolio selection in lean six sigma, International J. Production Economics, 186 (2017), 81-88.  doi: 10.1016/j.ijpe.2017.01.015.
    [29] G. KaraA. Özmen and G.-W. Weber, Stability advances in robust portfolio optimization under parallelepiped uncertainty, Central European J. Oper. Research, 27 (2019), 241-261.  doi: 10.1007/s10100-017-0508-5.
    [30] E. C. Y. KohN. H. M. Caldwell and P. J. Clarkson, A method to assess the effects of engineering change propagation, Research in Engineering Design, 23 (2012), 329-351.  doi: 10.1007/s00163-012-0131-3.
    [31] X.-m. LIH.-j. WeiX.-l. Gou and J.-x. Qi, Study of Bi-objective project portfolio selection model based on the divisibility, Chinese J. Management Science, (2014), 154-157.  doi: 10.16381/j.cnki.issn1003-207x.2014.s1.047.
    [32] X. LiY. WangQ. Yan and X. Zhao, Uncertain mean-variance model for dynamic project portfolio selection problem with divisibility, Fuzzy Optim. Decis. Mak., 18 (2019), 37-56.  doi: 10.1007/s10700-018-9283-6.
    [33] D. Lozovanu and S. Pickl, Algorithms for solving multiobjective discrete control problems and dynamic c-games on networks, Discrete Appl. Math., 155 (2007), 1846-1857.  doi: 10.1016/j.dam.2007.03.012.
    [34] V. MohagheghiS. M. MousaviB. Vahdani and M. R. Shahriari, R&D project evaluation and project portfolio selection by a new interval type-2 fuzzy optimization approach, Neural Compu. Appl., 28 (2017), 3869-3888.  doi: 10.1007/s00521-016-2262-3.
    [35] V. MohagheghiS. M. Mousavi and M. Mojtahedi, Project portfolio selection problems: Two decades review from 1999 to 2019, J. Intelligent & Fuzzy Systems, 38 (2020), 1675-1689.  doi: 10.3233/JIFS-182847.
    [36] A. MoheimaniR. SheikhS. M. H. Hosseini and S. S. Sana, Assessing the preparedness of hospitals facing disasters using the rough set theory: Guidelines for more preparedness to cope with the COVID-19, Inter. J. Systems Science: Operations & Logistics, (2021), 1-16.  doi: 10.1080/23302674.2021.1904301.
    [37] E.-J. Noh and J.-H. Kim, An optimal portfolio model with stochastic volatility and stochastic interest rate, J. Math. Anal. Appl., 375 (2011), 510-522.  doi: 10.1016/j.jmaa.2010.09.055.
    [38] D. PamučarStević and S. Sremac, A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (FUCOM), Symmetry, 10 (2018).  doi: 10.3390/sym10090393.
    [39] F. Perez and T. Gomez, Multiobjective project portfolio selection with fuzzy constraints, Ann. Oper. Res., 245 (2016), 7-29.  doi: 10.1007/s10479-014-1556-z.
    [40] A. Purnus and C.-N. Bodea, Project prioritization and portfolio performance measurement in project oriented organizations, Procedia - Social and Behavioral Sciences, 119 (2014), 339-348.  doi: 10.1016/j.sbspro.2014.03.039.
    [41] S. K. RoyG. MaityG. W. Weber and S. Z. A. Gök, Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal, Ann. Oper. Res., 253 (2017), 599-620.  doi: 10.1007/s10479-016-2283-4.
    [42] O. Sahin Zorluoglu and O. Kabak, Weighted cumulative belief degree approach for project portfolio selection, Group Decision and Negotiation, 29 (2020), 679-722.  doi: 10.1007/s10726-020-09673-3.
    [43] E. Savku, N. Azevedo and G. W. Weber, Optimal control of stochastic hybrid models in the framework of regime switches, In Modeling, Dynamics, Optimization and Bioeconomics II, 195 (2017), 371–387. doi: 10.1007/978-3-319-55236-1_18.
    [44] E. Savku and G.-W. Weber, Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market, Annals of Operations Research, (2020). doi: 10.1007/s10479-020-03768-5.
    [45] H. Y. SongY. T. Guo and S. J. Bai, Research on project portfolio allocation based on strategic orientation, Res. Sci. Technology Manag, 16 (2013), 186-189.  doi: 10.3969/j.issn.1000-7695.2013.16.039.
    [46] M. E. SouriR. SheikhF. Sajjadian and S. S. Sana, Product acceptance: Service preference based on e-service quality using g-rough set theory, Inter. J. Industrial and Systems Engineering, 37 (2021), 527-543.  doi: 10.1504/IJISE.2021.114076.
    [47] S. Iamratanakul, P. Patanakul and D. Milosevic, Project portfolio selection: From past to present, In 2008 4th IEEE International Conference on Management of Innovation and Technology, (2008), 287-292. doi: 10.1109/ICMIT.2008.4654378.
    [48] M. A. TakamiR. Sheikh and S. S. Sana, A hesitant fuzzy set theory based approach for project portfolio selection with interactions under uncertainty, J. Information Science and Engineering, 34 (2018), 65-79.  doi: 10.6688/JISE.2018.34.1.5.
    [49] B. Z. Temocin and G.-W. Weber, Optimal control of stochastic hybrid system with jumps: A numerical approximation, J. Comput. Appl. Math., 259 (2014), 443-451.  doi: 10.1016/j.cam.2013.10.021.
    [50] E. VilkkumaaJ. Liesiö and A. Salo, Optimal strategies for selecting project portfolios using uncertain value estimates, European J. Oper. Research, 233 (2014), 772-783.  doi: 10.1016/j.ejor.2013.09.023.
    [51] X. B. WangS. J. Bai and L. B. Bai, Strategic closeness for aerospace project portfolio allocation based on synergistic theory, Space Environ Eng, 32 (2015), 217-223.  doi: 10.3969/j.issn.1673-1379.2015.02.014.
    [52] G. XieW. YueS. Wang and K. K. Lai, Dynamic risk management in petroleum project investment based on a variable precision rough set model, Technological Forecasting and Social Change, 77 (2010), 891-901.  doi: 10.1016/j.techfore.2010.01.013.
    [53] S. Yan and X. Ji, Portfolio selection model of oil projects under uncertain environment, Soft Computing, 22 (2018), 5725-5734.  doi: 10.1007/s00500-017-2619-2.
    [54] W. YongshengL. Changyong and J. U. Yanzhong, Multi-phase rolling optimization model of project portfolio selection under uncertainty, J. System Engineerting Theory & Practice, 32 (2012), 1290-1297. 
    [55] M. H. YuanS. ChengZ. Y. Dai and A. M. Ji, Project decision-making for conceptual design based on rough set, Key Engineering Materials, 620 (2014), 402-410.  doi: 10.4028/www.scientific.net/KEM.620.402.
    [56] W.-G. ZhangY.-J. Liu and W.-J. Xu, A new fuzzy programming approach for multi-period portfolio optimization with return demand and risk control, Fuzzy Sets and Systems, 246 (2014), 107-126.  doi: 10.1016/j.fss.2013.09.002.
    [57] X.-q. Zou and Q. Yang, R & D Project Portfolio Selection Based on Dominationa and Diffusion Relationship in th Project Network, Chinese J. Management Science, 27 (2019), 198-209.  doi: 10.16381/j.cnki.issn1003-207x.2019.04.019.
  • 加载中

Figures(6)

Tables(12)

SHARE

Article Metrics

HTML views(2620) PDF downloads(811) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return