[1]
|
B. Alvarez-García and A. Fernández-Castro, A comprehensive approach for the selection of a portfolio of interdependent projects. An application to subsidized projects in Spain, Computers & Industrial Engineering, 118 (2018), 153-159.
doi: 10.1016/j.cie.2018.02.025.
|
[2]
|
M. Anisseh, F. Hemmati and R. Shahraki, Best selection of project portfolio using Fuzzy AHP and Fuzzy TOPSIS, J. Engineering Management and Competitiveness, 8 (2018), 3-10.
|
[3]
|
C. Anyaeche, D. Ighravwe and T. Asokeji, Project portfolio selection of banking services using COPRAS and Fuzzy-TOPSIS, J. Project Management, (2017), 51-65.
doi: 10.5267/j.jpm.2017.6.004.
|
[4]
|
N. P. Archer and F. Ghasemzadeh, An integrated framework for project portfolio selection, International J. Project Management, 17 (1999), 207-216.
doi: 10.1016/S0263-7863(98)00032-5.
|
[5]
|
M. Ashrafi, H. Davoudpour and M. Abbassi, Developing a decision support system for R&D project portfolio selection with interdependencies, In AIP Conference Proceedings, 1499 (2012), 370-378.
doi: 10.1063/1.4769016.
|
[6]
|
S. M. Avdoshin and A. A. Lifshits, Project portfolio formation based on fuzzy multi-objective model, Business Informatics, 27 (2014), 14-22.
|
[7]
|
L. Bai, H. Chen, Q. Gao and W. Luo, Project portfolio selection based on synergy degree of composite system, Soft Computing, 22 (2018), 5535-5545.
doi: 10.1007/s00500-018-3277-8.
|
[8]
|
R. Bhattacharyya, P. Kumar and S. Kar, Fuzzy R&D portfolio selection of interdependent projects, Comput. Math. Appl., 62 (2011), 3857-3870.
doi: 10.1016/j.camwa.2011.09.036.
|
[9]
|
A. K. Birjandi, F. Akhyani, R. Sheikh and S. S. Sana, Evaluation and selecting the contractor in bidding with incomplete information using MCGDM method, Soft Computing, 23 (2019), 10569-10585.
doi: 10.1007/s00500-019-04050-y.
|
[10]
|
A. F. Carazo, Multi-criteria project portfolio selection, Handbook on Project Management and Scheduling, 2 (2015), 709-728.
doi: 10.1007/978-3-319-05915-0_3.
|
[11]
|
W. Chen, D. Li and Y.-J. Liu, a novel hybrid ICA-FA algorithm for multiperiod uncertain portfolio optimization model based on multiple criteria, IEEE Transactions on Fuzzy Systems, 27 (2019), 1023-1036.
doi: 10.1109/TFUZZ.2018.2829463.
|
[12]
|
W. Chen, S.-S. Li, J. Zhang and M. K. Mehlawat, A comprehensive model for fuzzy multi-objective portfolio selection based on DEA cross-efficiency model, Soft Computing, 24 (2020), 2515-2526.
doi: 10.1007/s00500-018-3595-x.
|
[13]
|
I. R. Chiang and M. A. Nunez, Strategic alignment and value maximization for IT project portfolios, Information Technology and Management, 14 (2013), 143-157.
doi: 10.1007/s10799-012-0126-9.
|
[14]
|
C. G. da Silva, J. Meidanis, A. V. Moura, M. A. Souza, P. Viadanna, M. R. de Oliveira, M. R. de Oliveira, L. H. Jardim, G. A. C. Lima and R. S. de Barros, An improved visualization-based approach for project portfolio selection, Computers in Human Behavior, 73 (2017), 685-696.
doi: 10.1016/j.chb.2016.12.083.
|
[15]
|
D. Danesh, M. J. Ryan and A. Abbasi, Multi-criteria decision-making methods for project portfolio management: A literature review, Inter. J. Management and Decision Making, 17 (2018), 75-94.
doi: 10.1504/IJMDM.2017.10006139.
|
[16]
|
A. Debnath, J. Roy, S. Kar, E. Zavadskas and J. Antucheviciene, a hybrid MCDM approach
for strategic project portfolio selection of agro by-products, Sustainability, 9 (2017).
doi: 10.3390/su9081302.
|
[17]
|
K. F. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss and C. Stummer, Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection, European J. Oper. Res., 171 (2006), 830-841.
doi: 10.1016/j.ejor.2004.09.009.
|
[18]
|
A. M. Daryani, M. M. Omran, A. Makui, E. Zavadskas and J. Antucheviciene, A novel heuristic, based on a new robustness concept, for multi-objective project portfolio optimization, Computers & Industrial Engineering, 139 (2020).
|
[19]
|
M. O. Esangbedo, S. Bai, S. Mirjalili and Z. Wang, Evaluation of human resource information systems using grey ordinal pairwise comparison MCDM methods, Expert Systems with Applications, 182 (2021).
doi: 10.1016/j.eswa.2021.115151.
|
[20]
|
T. Fliedner and J. Liesiö, Adjustable robustness for multi-attribute project portfolio selection, European J. Oper. Res., 252 (2016), 931-946.
doi: 10.1016/j.ejor.2016.01.058.
|
[21]
|
S. F. Ghannadpour, A. R. Hoseini, M. Bagherpour and E. Ahmadi, Appraising the triple bottom line utility of sustainable project portfolio selection using a novel multi-criteria house of portfolio, Environment, Development and Sustainability, 23 (2021), 3396-3437.
doi: 10.1007/s10668-020-00724-y.
|
[22]
|
R. Ghasemiyeh, R. Moghdani and S. S. Sana, A hybrid artificial neural network with metaheuristic algorithms for predicting stock price, Cybernetics and Systems, 48 (2017), 365-392.
doi: 10.1080/01969722.2017.1285162.
|
[23]
|
X.-Y. Gu, R & D project dynamic investment decision-making model based on real option, Chinese Journal of Management Science, 23 (2015), 94-102.
doi: 10.16381/j.cnki.issn1003-207x.2015.07.012.
|
[24]
|
P. Guo, J. J. Liang, Y. M. Zhu and J. F. Hu, R&D project portfolio selection model analysis within project interdependencies context, 2008 IEEE International Conference on Industrial Engineering and Engineering Management, (2008), 994-998.
doi: 10.1109/IEEM.2008.4738019.
|
[25]
|
Y. Guo, L. Wang, S. Li, Z. Chen and Y. Cheng, Balancing strategic contributions and financial returns: A project portfolio selection model under uncertainty, Soft Computing, 22 (2018), 5547-5559.
doi: 10.1007/s00500-018-3294-7.
|
[26]
|
N. G. Hall, D. Z. Long, J. Qi and M. Sim, Managing underperformance risk in project portfolio selection, Oper. Res., 63 (2015), 660-675.
doi: 10.1287/opre.2015.1382.
|
[27]
|
X. Huang and T. Zhao, Project selection and scheduling with uncertain net income and investment cost, Appl. Math. Compu., 247 (2014), 61-71.
doi: 10.1016/j.amc.2014.08.082.
|
[28]
|
V. Kalashnikov, F. Benita, F. López-Ramos and A. Hernández-Luna, Bi-objective project portfolio selection in lean six sigma, International J. Production Economics, 186 (2017), 81-88.
doi: 10.1016/j.ijpe.2017.01.015.
|
[29]
|
G. Kara, A. Özmen and G.-W. Weber, Stability advances in robust portfolio optimization under parallelepiped uncertainty, Central European J. Oper. Research, 27 (2019), 241-261.
doi: 10.1007/s10100-017-0508-5.
|
[30]
|
E. C. Y. Koh, N. H. M. Caldwell and P. J. Clarkson, A method to assess the effects of engineering change propagation, Research in Engineering Design, 23 (2012), 329-351.
doi: 10.1007/s00163-012-0131-3.
|
[31]
|
X.-m. LI, H.-j. Wei, X.-l. Gou and J.-x. Qi, Study of Bi-objective project portfolio selection model based on the divisibility, Chinese J. Management Science, (2014), 154-157.
doi: 10.16381/j.cnki.issn1003-207x.2014.s1.047.
|
[32]
|
X. Li, Y. Wang, Q. Yan and X. Zhao, Uncertain mean-variance model for dynamic project portfolio selection problem with divisibility, Fuzzy Optim. Decis. Mak., 18 (2019), 37-56.
doi: 10.1007/s10700-018-9283-6.
|
[33]
|
D. Lozovanu and S. Pickl, Algorithms for solving multiobjective discrete control problems and dynamic c-games on networks, Discrete Appl. Math., 155 (2007), 1846-1857.
doi: 10.1016/j.dam.2007.03.012.
|
[34]
|
V. Mohagheghi, S. M. Mousavi, B. Vahdani and M. R. Shahriari, R&D project evaluation and project portfolio selection by a new interval type-2 fuzzy optimization approach, Neural Compu. Appl., 28 (2017), 3869-3888.
doi: 10.1007/s00521-016-2262-3.
|
[35]
|
V. Mohagheghi, S. M. Mousavi and M. Mojtahedi, Project portfolio selection problems: Two decades review from 1999 to 2019, J. Intelligent & Fuzzy Systems, 38 (2020), 1675-1689.
doi: 10.3233/JIFS-182847.
|
[36]
|
A. Moheimani, R. Sheikh, S. M. H. Hosseini and S. S. Sana, Assessing the preparedness of hospitals facing disasters using the rough set theory: Guidelines for more preparedness to cope with the COVID-19, Inter. J. Systems Science: Operations & Logistics, (2021), 1-16.
doi: 10.1080/23302674.2021.1904301.
|
[37]
|
E.-J. Noh and J.-H. Kim, An optimal portfolio model with stochastic volatility and stochastic interest rate, J. Math. Anal. Appl., 375 (2011), 510-522.
doi: 10.1016/j.jmaa.2010.09.055.
|
[38]
|
D. Pamučar, Stević and S. Sremac, A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (FUCOM), Symmetry, 10 (2018).
doi: 10.3390/sym10090393.
|
[39]
|
F. Perez and T. Gomez, Multiobjective project portfolio selection with fuzzy constraints, Ann. Oper. Res., 245 (2016), 7-29.
doi: 10.1007/s10479-014-1556-z.
|
[40]
|
A. Purnus and C.-N. Bodea, Project prioritization and portfolio performance measurement in project oriented organizations, Procedia - Social and Behavioral Sciences, 119 (2014), 339-348.
doi: 10.1016/j.sbspro.2014.03.039.
|
[41]
|
S. K. Roy, G. Maity, G. W. Weber and S. Z. A. Gök, Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal, Ann. Oper. Res., 253 (2017), 599-620.
doi: 10.1007/s10479-016-2283-4.
|
[42]
|
O. Sahin Zorluoglu and O. Kabak, Weighted cumulative belief degree approach for project portfolio selection, Group Decision and Negotiation, 29 (2020), 679-722.
doi: 10.1007/s10726-020-09673-3.
|
[43]
|
E. Savku, N. Azevedo and G. W. Weber, Optimal control of stochastic hybrid models in the framework of regime switches, In Modeling, Dynamics, Optimization and Bioeconomics II, 195 (2017), 371–387.
doi: 10.1007/978-3-319-55236-1_18.
|
[44]
|
E. Savku and G.-W. Weber, Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market, Annals of Operations Research, (2020).
doi: 10.1007/s10479-020-03768-5.
|
[45]
|
H. Y. Song, Y. T. Guo and S. J. Bai, Research on project portfolio allocation based on strategic orientation, Res. Sci. Technology Manag, 16 (2013), 186-189.
doi: 10.3969/j.issn.1000-7695.2013.16.039.
|
[46]
|
M. E. Souri, R. Sheikh, F. Sajjadian and S. S. Sana, Product acceptance: Service preference based on e-service quality using g-rough set theory, Inter. J. Industrial and Systems Engineering, 37 (2021), 527-543.
doi: 10.1504/IJISE.2021.114076.
|
[47]
|
S. Iamratanakul, P. Patanakul and D. Milosevic, Project portfolio selection: From past to present, In 2008 4th IEEE International Conference on Management of Innovation and Technology, (2008), 287-292.
doi: 10.1109/ICMIT.2008.4654378.
|
[48]
|
M. A. Takami, R. Sheikh and S. S. Sana, A hesitant fuzzy set theory based approach for project portfolio selection with interactions under uncertainty, J. Information Science and Engineering, 34 (2018), 65-79.
doi: 10.6688/JISE.2018.34.1.5.
|
[49]
|
B. Z. Temocin and G.-W. Weber, Optimal control of stochastic hybrid system with jumps: A numerical approximation, J. Comput. Appl. Math., 259 (2014), 443-451.
doi: 10.1016/j.cam.2013.10.021.
|
[50]
|
E. Vilkkumaa, J. Liesiö and A. Salo, Optimal strategies for selecting project portfolios using uncertain value estimates, European J. Oper. Research, 233 (2014), 772-783.
doi: 10.1016/j.ejor.2013.09.023.
|
[51]
|
X. B. Wang, S. J. Bai and L. B. Bai, Strategic closeness for aerospace project portfolio allocation based on synergistic theory, Space Environ Eng, 32 (2015), 217-223.
doi: 10.3969/j.issn.1673-1379.2015.02.014.
|
[52]
|
G. Xie, W. Yue, S. Wang and K. K. Lai, Dynamic risk management in petroleum project investment based on a variable precision rough set model, Technological Forecasting and Social Change, 77 (2010), 891-901.
doi: 10.1016/j.techfore.2010.01.013.
|
[53]
|
S. Yan and X. Ji, Portfolio selection model of oil projects under uncertain environment, Soft Computing, 22 (2018), 5725-5734.
doi: 10.1007/s00500-017-2619-2.
|
[54]
|
W. Yongsheng, L. Changyong and J. U. Yanzhong, Multi-phase rolling optimization model of project portfolio selection under uncertainty, J. System Engineerting Theory & Practice, 32 (2012), 1290-1297.
|
[55]
|
M. H. Yuan, S. Cheng, Z. Y. Dai and A. M. Ji, Project decision-making for conceptual design based on rough set, Key Engineering Materials, 620 (2014), 402-410.
doi: 10.4028/www.scientific.net/KEM.620.402.
|
[56]
|
W.-G. Zhang, Y.-J. Liu and W.-J. Xu, A new fuzzy programming approach for multi-period portfolio optimization with return demand and risk control, Fuzzy Sets and Systems, 246 (2014), 107-126.
doi: 10.1016/j.fss.2013.09.002.
|
[57]
|
X.-q. Zou and Q. Yang, R & D Project Portfolio Selection Based on Dominationa and Diffusion Relationship in th Project Network, Chinese J. Management Science, 27 (2019), 198-209.
doi: 10.16381/j.cnki.issn1003-207x.2019.04.019.
|