• Previous Article
    Collaborative mission optimization for ship rapid search by multiple heterogeneous remote sensing satellites
  • JIMO Home
  • This Issue
  • Next Article
    A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic
doi: 10.3934/jimo.2021182
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimality conditions of singular controls for systems with Caputo fractional derivatives

1. 

Baku State University, Department of Mechanics and Mathematics, Baku, Azerbaijan

2. 

Department of Mathematics, Istanbul Technical University, Istanbul, Turkey, Azerbaijan National Academy of Sciences, Institute of Control Systems, Baku, Azerbaijan

*Corresponding author: Elimhan N. Mahmudov

Received  September 2020 Revised  July 2021 Early access November 2021

In this paper, we consider an optimal control problem in which a dynamical system is controlled by a nonlinear Caputo fractional state equation. The problem is investigated in the case when the Pontryagin maximum principle degenerates, that is, it is satisfied trivially. Then the second order optimality conditions are derived for the considered problem.

Citation: Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021182
References:
[1]

O. P. AgrawalO. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control, 16 (2010), 1967-1976.  doi: 10.1177/1077546309353361.  Google Scholar

[2]

N. U. Ahmed and C. D. Charalambous, Filtering for linear systems driven by fractional Brownian motion, SIAM J. Control Optim., 41 (2002), 313-330.  doi: 10.1137/S0363012900368715.  Google Scholar

[3]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.  Google Scholar

[4]

M. Bergounioux and L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constaints, ESAIM Control Optim. Calc. Var., 26 (2020), 1-38.  doi: 10.1051/cocv/2019021.  Google Scholar

[5]

A. Carpinteri, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), (291–348). doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[6]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Matematics, Vol.2004, Spinger-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[7]

R. Gabasov and F. M. Kirillova, High-order necessary conditions for optimality, SIAM J. Control, 10 (1972), 127-168.  doi: 10.1137/0310012.  Google Scholar

[8]

Z. GongC. LiuK. L. TeoS. Wang and Y. Wu, Numerical solution of free final time fractional optimal control problems, Appl. Math. Comput., 405 (2021), 1-15.  doi: 10.1016/j.amc.2021.126270.  Google Scholar

[9]

M. I. Gomoyunov, On representation formulas for solutions of linear differential equations with Caputo fractional derivatives, Fract. Calc. Appl. Anal., 23 (2020), 1141-1160.  doi: 10.1515/fca-2020-0058.  Google Scholar

[10]

T. L. Guo, The necessary conditions of fractional optimal control in the sense of Caputo, J. Optim. Theory Aappl., 156 (2013), 115-126.  doi: 10.1007/s10957-012-0233-0.  Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[12]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[14]

W. LiS. Wang and V. Rehbock, A 2nd-order one-point numerical integration scheme for fractional ordinary differential equation, Numer. Algebra Control Optim., 7 (2017), 273-287.  doi: 10.3934/naco.2017018.  Google Scholar

[15]

W. LiS. Wang and V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556-573.  doi: 10.1007/s10957-018-1418-y.  Google Scholar

[16]

P. Louhan and S. K. Suneja, On fractional vector optimization over cones with support functions, J. Ind. Manag. Optim., 13 (2017), 549-572.  doi: 10.3934/jimo.2016031.  Google Scholar

[17]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[18]

E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: COCV. doi: 10.1051/cocv/2019018.  Google Scholar

[19]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.  doi: 10.3934/jimo.2018145.  Google Scholar

[20]

E. N. Mahmudov, Approximation and optimization of higher order discrete and differential inclusions, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 1-26.  doi: 10.1007/s00030-013-0234-1.  Google Scholar

[21]

B. S. Mordukhovich, Approximation Methods in Problems of Optimization and Control, Nauka, Moskow, 1988.  Google Scholar

[22]

P. MuL. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, J. Optim. Theory Appl., 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.  Google Scholar

[23] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Aapplications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[24]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishenko, The Mathematical Theory of Optimal Processes, 4$^th$ edition, Nauka, Moskow, 1983,392pp.  Google Scholar

[25]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381.  doi: 10.3934/jimo.2014.10.363.  Google Scholar

[26]

E. RentsenJ. Zhou and K. L. Teo, A global optimization approach to fractional optimal control, J. Ind. Manag. Optim., 12 (2016), 73-82.  doi: 10.3934/jimo.2016.12.73.  Google Scholar

[27]

L. I. Rozonoer, The maximum principle by L. S. Pontryagin in the theory of optimal systems, Ⅰ, Ⅱ, Ⅲ, Automatics and Remote Control, 1959 (1959), 10-12.   Google Scholar

[28]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[29] V. E. Tarasov, Fractional Dynamics; Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Hedelberg, Higher Education Press, Beijing, 2010.  doi: 10.1007/978-3-642-14003-7.  Google Scholar
[30]

N. H. TuanD. O'Regan and T. B. Ngoc, Continuity with respect to fractional order of the time fractional diffusion-wave equation, Evol. Equ. Control Theory, 9 (2020), 773-793.  doi: 10.3934/eect.2020033.  Google Scholar

[31]

S. Westerlund, Dead matter has memory!, Physical Scripta, 43 (1991), 174-179.  doi: 10.1088/0031-8949/43/2/011.  Google Scholar

[32]

Z. WuY. Zou and N. Huang, A new class of global fractional-order projective dynamical system with an application, J. Ind. Manag. Optim., 16 (2020), 37-53.  doi: 10.3934/jimo.2018139.  Google Scholar

[33]

X. YangS. Y. Wang and X. T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl., 274 (2002), 279-295.  doi: 10.1016/S0022-247X(02)00299-8.  Google Scholar

[34]

X. YangX. Q. Yang and K. L. Teo, Duality and saddle-point type optimality for generalized nonlinear fractional programming, J. Math. Anal. Appl., 289 (2004), 100-109.  doi: 10.1016/j.jmaa.2003.08.029.  Google Scholar

[35]

X. Yang and S. H. Hou, On minimax fractional optimality and duality with generalized convexity, J. Global Optim., 31 (2005), 235-252.  doi: 10.1007/s10898-004-5698-4.  Google Scholar

[36]

C. YuK. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Process., 95 (2014), 32-42.   Google Scholar

[37]

S. S. Yusubov, Necessary optimality conditions for systems with impulsive actions, Comput. Math and Math. Phys., 45 (2005), 222-226.   Google Scholar

[38]

S. S. Yusubov, Necessary optimality conditions for singular controls, Comput. Math. Math. Phys., 47 (2007), 1446-1451.  doi: 10.1134/S0965542507090060.  Google Scholar

[39]

S. S. Yusubov, Boundary value problems for hyperbolic equations with a Caputo fractional derivative, Advanced Mathematical Models and Applications, 5 (2020), 192-204.   Google Scholar

[40]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

show all references

References:
[1]

O. P. AgrawalO. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control, 16 (2010), 1967-1976.  doi: 10.1177/1077546309353361.  Google Scholar

[2]

N. U. Ahmed and C. D. Charalambous, Filtering for linear systems driven by fractional Brownian motion, SIAM J. Control Optim., 41 (2002), 313-330.  doi: 10.1137/S0363012900368715.  Google Scholar

[3]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.  Google Scholar

[4]

M. Bergounioux and L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constaints, ESAIM Control Optim. Calc. Var., 26 (2020), 1-38.  doi: 10.1051/cocv/2019021.  Google Scholar

[5]

A. Carpinteri, Fractional calculus: Some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, 378 (1997), (291–348). doi: 10.1007/978-3-7091-2664-6_7.  Google Scholar

[6]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Matematics, Vol.2004, Spinger-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[7]

R. Gabasov and F. M. Kirillova, High-order necessary conditions for optimality, SIAM J. Control, 10 (1972), 127-168.  doi: 10.1137/0310012.  Google Scholar

[8]

Z. GongC. LiuK. L. TeoS. Wang and Y. Wu, Numerical solution of free final time fractional optimal control problems, Appl. Math. Comput., 405 (2021), 1-15.  doi: 10.1016/j.amc.2021.126270.  Google Scholar

[9]

M. I. Gomoyunov, On representation formulas for solutions of linear differential equations with Caputo fractional derivatives, Fract. Calc. Appl. Anal., 23 (2020), 1141-1160.  doi: 10.1515/fca-2020-0058.  Google Scholar

[10]

T. L. Guo, The necessary conditions of fractional optimal control in the sense of Caputo, J. Optim. Theory Aappl., 156 (2013), 115-126.  doi: 10.1007/s10957-012-0233-0.  Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[12]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[13]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[14]

W. LiS. Wang and V. Rehbock, A 2nd-order one-point numerical integration scheme for fractional ordinary differential equation, Numer. Algebra Control Optim., 7 (2017), 273-287.  doi: 10.3934/naco.2017018.  Google Scholar

[15]

W. LiS. Wang and V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556-573.  doi: 10.1007/s10957-018-1418-y.  Google Scholar

[16]

P. Louhan and S. K. Suneja, On fractional vector optimization over cones with support functions, J. Ind. Manag. Optim., 13 (2017), 549-572.  doi: 10.3934/jimo.2016031.  Google Scholar

[17]

E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Inc., Amsterdam, 2011. doi: 10.1016/B978-0-12-388428-2.00001-1.  Google Scholar

[18]

E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: COCV. doi: 10.1051/cocv/2019018.  Google Scholar

[19]

E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Ind. Manag. Optim., 16 (2020), 169-187.  doi: 10.3934/jimo.2018145.  Google Scholar

[20]

E. N. Mahmudov, Approximation and optimization of higher order discrete and differential inclusions, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 1-26.  doi: 10.1007/s00030-013-0234-1.  Google Scholar

[21]

B. S. Mordukhovich, Approximation Methods in Problems of Optimization and Control, Nauka, Moskow, 1988.  Google Scholar

[22]

P. MuL. Wang and C. Liu, A control parameterization method to solve the fractional-order optimal control problem, J. Optim. Theory Appl., 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.  Google Scholar

[23] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Aapplications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[24]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishenko, The Mathematical Theory of Optimal Processes, 4$^th$ edition, Nauka, Moskow, 1983,392pp.  Google Scholar

[25]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363-381.  doi: 10.3934/jimo.2014.10.363.  Google Scholar

[26]

E. RentsenJ. Zhou and K. L. Teo, A global optimization approach to fractional optimal control, J. Ind. Manag. Optim., 12 (2016), 73-82.  doi: 10.3934/jimo.2016.12.73.  Google Scholar

[27]

L. I. Rozonoer, The maximum principle by L. S. Pontryagin in the theory of optimal systems, Ⅰ, Ⅱ, Ⅲ, Automatics and Remote Control, 1959 (1959), 10-12.   Google Scholar

[28]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[29] V. E. Tarasov, Fractional Dynamics; Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Hedelberg, Higher Education Press, Beijing, 2010.  doi: 10.1007/978-3-642-14003-7.  Google Scholar
[30]

N. H. TuanD. O'Regan and T. B. Ngoc, Continuity with respect to fractional order of the time fractional diffusion-wave equation, Evol. Equ. Control Theory, 9 (2020), 773-793.  doi: 10.3934/eect.2020033.  Google Scholar

[31]

S. Westerlund, Dead matter has memory!, Physical Scripta, 43 (1991), 174-179.  doi: 10.1088/0031-8949/43/2/011.  Google Scholar

[32]

Z. WuY. Zou and N. Huang, A new class of global fractional-order projective dynamical system with an application, J. Ind. Manag. Optim., 16 (2020), 37-53.  doi: 10.3934/jimo.2018139.  Google Scholar

[33]

X. YangS. Y. Wang and X. T. Deng, Symmetric duality for a class of multiobjective fractional programming problems, J. Math. Anal. Appl., 274 (2002), 279-295.  doi: 10.1016/S0022-247X(02)00299-8.  Google Scholar

[34]

X. YangX. Q. Yang and K. L. Teo, Duality and saddle-point type optimality for generalized nonlinear fractional programming, J. Math. Anal. Appl., 289 (2004), 100-109.  doi: 10.1016/j.jmaa.2003.08.029.  Google Scholar

[35]

X. Yang and S. H. Hou, On minimax fractional optimality and duality with generalized convexity, J. Global Optim., 31 (2005), 235-252.  doi: 10.1007/s10898-004-5698-4.  Google Scholar

[36]

C. YuK. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Process., 95 (2014), 32-42.   Google Scholar

[37]

S. S. Yusubov, Necessary optimality conditions for systems with impulsive actions, Comput. Math and Math. Phys., 45 (2005), 222-226.   Google Scholar

[38]

S. S. Yusubov, Necessary optimality conditions for singular controls, Comput. Math. Math. Phys., 47 (2007), 1446-1451.  doi: 10.1134/S0965542507090060.  Google Scholar

[39]

S. S. Yusubov, Boundary value problems for hyperbolic equations with a Caputo fractional derivative, Advanced Mathematical Models and Applications, 5 (2020), 192-204.   Google Scholar

[40]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theory, 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.  Google Scholar

[1]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[2]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[3]

Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024

[4]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[5]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[6]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[9]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[10]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control & Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002

[11]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[12]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[13]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[14]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[15]

Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021059

[16]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[17]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[18]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[19]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[20]

Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure & Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181

2020 Impact Factor: 1.801

Article outline

[Back to Top]