[1]
|
X. Bai and V. Cherkassky, Gender classification of human faces using inference through contradictions, In Proceedings of the IEEE International Joint Conference on Neural Networks, (2008), 746–750.
|
[2]
|
R. Batuwita and V. Palade, FSVM-CIL: Fuzzy support vector machines for class imbalance learning, IEEE Transactions on Fuzzy Systems, 18 (2010), 558-571.
doi: 10.1109/TFUZZ.2010.2042721.
|
[3]
|
C. L. Blake and C. J. Merz, UCIrepository for machine learning databases [online], http//www.ics.uci.edu/ mlearn/MLRepository.html, 1998.
|
[4]
|
S. Chen and C. Zhang, Selecting informative Universum sample for semi-supervised learning, In Proceedings of the 21st International Joint Conference on Artificial Intelligence, (2009), 1016–1021.
|
[5]
|
V. Cherkassky, S. Dhar and W. Dai, Practical conditions for effectiveness of the universum learning, IEEE Transactions on Neural Networks, 22 (2011), 1241-1255.
doi: 10.1109/TNN.2011.2157522.
|
[6]
|
P. Cho, M. Lee and W. Chang, Instance-based entropy fuzzy support vector machine for imbalanced data, PAA Pattern Anal. Appl., 23 (2020), 1183-1202.
doi: 10.1007/s10044-019-00851-x.
|
[7]
|
C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018.
|
[8]
|
J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7 (2006), 1-30.
|
[9]
|
Q. Fan, Z. Wang, D. Li, D. Gao and H. Zha, Entropy-based fuzzy support vector machine for imbalanced datasets, Knowledge-Based Systems, 115 (2017), 87-99.
doi: 10.1016/j.knosys.2016.09.032.
|
[10]
|
D. Gupta, B. Richhariya and P. Borah, A fuzzy twin support vector machine based on information entropy for class imbalance learning, Neural Computing and Applications, 31 (2019), 7153-7164.
doi: 10.1007/s00521-018-3551-9.
|
[11]
|
J. Huang and C. X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Transactions on Knowledge and Data Engineering, 17 (2005), 299-310.
|
[12]
|
L.-L. Li, X. Zhao, M.-L. Tseng and R. R. Tan, Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm, Journal of Cleaner Production, 242 (2020), 118447.
doi: 10.1016/j.jclepro.2019.118447.
|
[13]
|
C.-F. Lin and S.-D. Wang, Fuzzy support vector machines, IEEE Transactions on Neural Networks, 13 (2002), 464-471.
|
[14]
|
W. Long, Y. Tang and Y. Tian, Investor sentiment identification based on the universum SVM, Neural Computing and Applications, 30 (2018), 661-670.
doi: 10.1007/s00521-016-2684-y.
|
[15]
|
J. Luo, S.-C. Fang, Y. Bai and Z. Deng, Fuzzy quadratic surface support vector machine based on Fisher discriminant analysis, J. Ind. Manag. Optim., 12 (2016), 357-373.
doi: 10.3934/jimo.2016.12.357.
|
[16]
|
J. Luo, S.-C. Fang, Z. Deng and X. Guo, Soft quadratic surface support vector machine for binary classification, Asia-Pac. J. Oper. Res., 33 (2016), 22pp.
doi: 10.1142/S0217595916500469.
|
[17]
|
J. Luo, X. Yan and Y. Tian, Unsupervised quadratic surface support vector machine with application to credit risk assessment, European J. Oper. Res., 280 (2020), 1008-1017.
doi: 10.1016/j.ejor.2019.08.010.
|
[18]
|
J. Luo, X. Yang, Y. Tian and W. Yu, Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter, J. Ind. Manag. Optim., 16 (2020), 2743-2756.
doi: 10.3934/jimo.2019078.
|
[19]
|
A. Mousavi, Z. Gao, L. Han and A. Lim, Quadratic surface support vector machine with l1 norm regularization, J. Industrial and Management Optimization, 2021.
doi: 10.3934/jimo.2021046.
|
[20]
|
Z. Qi, Y. Tian and Y. Shi, Twin support vector machine with universum data, Neural Networks, 36 (2012), 112-119.
doi: 10.1016/j.neunet.2012.09.004.
|
[21]
|
Z. Qi, Y. Tian and Y. Shi, A nonparallel support vector machine for a classification problem with universum learning, J. Comput. Appl. Math., 263 (2014), 288-298.
doi: 10.1016/j.cam.2013.11.003.
|
[22]
|
S. Raghavendra and P. C. Deka, Support vector machine applications in the field of hydrology: A review, Applied Soft Computing, 19 (2014), 372-386.
doi: 10.1016/j.asoc.2014.02.002.
|
[23]
|
B. Richhariya and M. Tanveer, A fuzzy universum support vector machine based on information entropy, Machine Intelligence and Signal Analysis, 748 (2019), 569-582.
doi: 10.1007/978-981-13-0923-6_49.
|
[24]
|
B. Richhariya and M. Tanveer, A reduced universum twin support vector machine for class imbalance learning, Pattern Recognition, 102 (2020).
doi: 10.1016/j.patcog.2019.107150.
|
[25]
|
B. Richhariya, M. Tanveer, A. Rashid and A. D. N. Initiative et al., Diagnosis of Alzheimer's disease using universum support vector machine based recursive feature elimination (USVM-RFE), Biomedical Signal Processing and Control, 59 (2020), 101903.
doi: 10.1016/j.bspc.2020.101903.
|
[26]
|
Y. Tian, M. Sun, Z. Deng, J. Luo and Y. Li, A new fuzzy set and nonkernel svm approach for mislabeled binary classification with applications, IEEE Transactions on Fuzzy Systems, 25 (2017), 1536-1545.
doi: 10.1109/TFUZZ.2017.2752138.
|
[27]
|
J. Weston, R. Collobert, F. Sinz, L. Bottou and V. Vapnik, Inference with the universum, In Proceedings of the 23rd International Conference on Machine Learning, (2006), 1009–1016.
doi: 10.1145/1143844.1143971.
|
[28]
|
Y. Xu, M. Chen, Z. Yang and G. Li, $\nu$-twin support vector machine with Universum data for classification, Applied Intelligence, 44 (2016), 956-968.
|