[1]
|
P. K. Anh and D. V. Hieu, Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems, Vietnam J. Math., 44 (2016), 351-374.
doi: 10.1007/s10013-015-0129-z.
|
[2]
|
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problems, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310.
|
[3]
|
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.
doi: 10.1088/0266-5611/20/1/006.
|
[4]
|
C. Byrne, Y. Censor and A. Gibali, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
|
[5]
|
H. Brézis and I. I. Chapitre, Opérateurs maximaux monotones, North-Holland Math. Stud., 5 (1973), 19-51.
|
[6]
|
C-S. Chuang, Strong convergence theorems for the split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl., 2013 (2013), 20pp.
doi: 10.1186/1687-1812-2013-350.
|
[7]
|
C-S. Chuang, Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem, Optimization, 65 (2016), 859-876.
doi: 10.1080/02331934.2015.1072715.
|
[8]
|
P. Cholamjiak, D. V. Hieu and Y. J. Cho, Relaxed forward-backward splitting methods for solving variational inclusions and applications, J. Sci. Comput., 88 (2021), 23pp.
doi: 10.1007/s10915-021-01608-7.
|
[9]
|
R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281-295.
doi: 10.1007/BF00941468.
|
[10]
|
Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365.
|
[11]
|
Y. Censor and T. Elfving, A multiprojections algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.
|
[12]
|
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.
|
[13]
|
Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.
doi: 10.1007/s11075-011-9490-5.
|
[14]
|
Y. Censor, A. Gibali and S. Reich, A von Neumann alternating method for finding common solutions to variational inequalities, Nonlinear Anal., 75 (2012), 4596-4603.
doi: 10.1016/j.na.2012.01.021.
|
[15]
|
Y. Censor, A. Gibali, S. Reich and S. Sabach, Common solutions to variational inequalities, Set. Valued Var. Anal., 20 (2012), 229-247.
doi: 10.1007/s11228-011-0192-x.
|
[16]
|
Y. Censor and A. Segal, Iterative projection methods in biomedical inverse problems. In: Censor Y, Jiang M, Louis AK (eds) Mathematical methods in biomedical imaging and intensity-modulated therapy, IMRT, CRM Series, Ed. Norm., Pisa, 7 (2008), 65-96.
|
[17]
|
B. Eicke, Iteration methods for convexly constrained ill-posed problems in Hilbert spaces, Numer. Funct. Anal. Optim., 13 (1992), 413-429.
doi: 10.1080/01630569208816489.
|
[18]
|
D. V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal., 21 (2016), 478-501.
doi: 10.3846/13926292.2016.1183527.
|
[19]
|
D. V. Hieu, Two hybrid algorithms for solving split equilibrium problems, Int. J. Comput. Math., 95 (2018), 561-583.
doi: 10.1080/00207160.2017.1291934.
|
[20]
|
D. V. Hieu, Projection methods for solving split equilibrium problems, J. Ind. Manag. Optim., 16 (2020), 2331-2349.
doi: 10.3934/jimo.2019056.
|
[21]
|
D. V. Hieu, P. K. Anh and N. H. Ha, Regularization proximal method for monotone variational inclusions, Netw. Spat. Econ., 2021.
doi: 10.1007/s11067-021-09552-7.
|
[22]
|
D. V. Hieu, P. K. Anh and L. D. Muu, Modified extragradient-like algorithms with new stepsizes for variational inequalities, Comput. Optim. Appl., 73 (2019), 913-932.
doi: 10.1007/s10589-019-00093-x.
|
[23]
|
D. V. Hieu, P. K. Anh, L. D. Muu and J. J. Strodiot, Iterative regularization methods with new stepsize rules for solving variational inclusions, J. Appl. Math. Comput., 2021.
doi: 10.1007/s12190-021-01534-9.
|
[24]
|
D. V. Hieu, Y. J. Cho, Y-B. Xiao and P. Kumam, Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces, Vietnam J. Math., 49 (2021), 1165-1183.
doi: 10.1007/s10013-020-00447-7.
|
[25]
|
D. V. Hieu, S. Reich, P. K. Anh and N. H. Ha, A new proximal-like algorithm for solving split variational inclusion problems, Numer. Algor., 2021.
doi: 10.1007/s11075-021-01135-4.
|
[26]
|
N. E. Hurt, Phase Retrieval and Zero Crossings: Mathematical Methods in Image Reconstruction, Mathematics and its Applications, 52. Kluwer Academic Publishers Group, Dordrecht, 1989.
|
[27]
|
L. V. Long, D. V. Thong and V. T. Dung, New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimization, 68 (2019), 2335-2363.
doi: 10.1080/02331934.2019.1631821.
|
[28]
|
A. Moudafi, Split monotone variational inclusions, J Optim Theory Appl., 150 (2011), 275-283.
doi: 10.1007/s10957-011-9814-6.
|
[29]
|
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55.
doi: 10.1006/jmaa.1999.6615.
|
[30]
|
A. Moudafi and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett., 8 (2014), 2099-2110.
doi: 10.1007/s11590-013-0708-4.
|
[31]
|
H. Stark, Image Recovery: Theory and Applications, Academic Press, Orlando, FL, 1987.
|
[32]
|
J. J. Strodiot, D. M. Giang and V. H. Nguyen, Strong convergence of an iterative method for solving the multiple-set split equality fixed point problem in a real Hilbert space, Rev. R. Acad. Cienc. Exactas Fas. Nat. Ser. A Mat. RACSAM, 111 (2017), 983-998.
doi: 10.1007/s13398-016-0338-7.
|
[33]
|
J. J. Strodiot, P. T. Vuong and V. H. Nguyen, A gradient projection method for solving split equality and split feasibility problems in Hilbert spaces, Optimization, 64 (2015), 2321-2341.
doi: 10.1080/02331934.2014.967237.
|
[34]
|
K. Sitthithakerngkiet, J. Deepho and P. Kumam, A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems, Appl. Math. Comput., 250 (2015), 986-1001.
doi: 10.1016/j.amc.2014.10.130.
|
[35]
|
S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147 (2010), 27-41.
doi: 10.1007/s10957-010-9713-2.
|
[36]
|
H. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65 (2002), 109-113.
doi: 10.1017/S0004972700020116.
|