[1]
|
M. J. Brennan and E. S. Schwartz, The pricing of equity-linked life insurance policies with an asset value guarantee, Journal of Financial Economics, 3 (1976), 195-213.
doi: 10.1016/0304-405X(76)90003-9.
|
[2]
|
N. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones and C. J. Nesbit, Actuarial Mathematics, 2nd edition, The Society of Actuaries, Illinois, 1997.
|
[3]
|
P. P. Boyle and E. S. Schwartz, Equilibrium prices of guarantees under equity-linked contracts, Journal of Risk and Insurance, 44 (1977), 639-660.
doi: 10.2307/251725.
|
[4]
|
P. P. Boyle and W. Tian, The design of equity-indexed annuities, Insurance Math. Econom., 43 (2008), 303-315.
doi: 10.1016/j.insmatheco.2008.05.006.
|
[5]
|
Y. F. Chiu, M. H. Hsieh and C. Tsai, Valuation and analysis on complex equity indexed annuities, Pacific-Basin Finance Journal, 57 (2019), 101175.
doi: 10.1016/j.pacfin.2019.101175.
|
[6]
|
Z. Cui, J. Kirkby and D. Nguyen, Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps, Insurance Math. Econom., 74 (2017), 46-62.
doi: 10.1016/j.insmatheco.2017.02.010.
|
[7]
|
D. Dufresne, Fitting combinations of exponentials to probability distributions, Appl. Stoch. Models Bus. Ind., 23 (2007), 23-48.
doi: 10.1002/asmb.635.
|
[8]
|
D. Dufresne, Stochastic life annuities, N. Am. Actuar. J., 11 (2007), 136-157.
doi: 10.1080/10920277.2007.10597441.
|
[9]
|
M. Dai and Y. K. Kwok, American options with lookback payoff, SIAM J. Appl. Math., 66 (2005), 206-227.
doi: 10.1137/S0036139903437345.
|
[10]
|
L. Feng and V. Linetsky, Computing exponential moments of the discrete maximum of a Lévy process and lookback options, Finance Stoch., 13 (2009), 501-529.
doi: 10.1007/s00780-009-0096-x.
|
[11]
|
R. Feng and X. Jing, Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits, Insurance Math. Econom, 72 (2017), 36-48.
doi: 10.1016/j.insmatheco.2016.10.011.
|
[12]
|
H. U. Gerber and E. S. W. Shiu, Pricing lookback options and dynamic guarantees, N. Am. Actuar. J., 7 (2003), 48-67.
doi: 10.1080/10920277.2003.10596076.
|
[13]
|
H. U. Gerber, E. S. W. Shiu and H. Yang, Valuing equity-linked death benefits and other contingent options: A discounted density approach, Insurance Math. Econom., 51 (2012), 73-92.
doi: 10.1016/j.insmatheco.2012.03.001.
|
[14]
|
H. U. Gerber, E. S. W. Shiu and H. Yang, Valuing equity-linked death benefits in jump diffusion models, Insurance Math. Econom., 53 (2013), 615-623.
doi: 10.1016/j.insmatheco.2013.08.010.
|
[15]
|
H. U. Gerber, E. S. W. Shiu and H. Yang, Geometric stopping of a random walk and its applications to valuing equity-linked death benefits, Insurance Math. Econom., 64 (2015), 313-325.
doi: 10.1016/j.insmatheco.2015.06.006.
|
[16]
|
J. M. Harrison, Brownian Motion and Stochastic Flow Systems, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1985.
|
[17]
|
M. Hardy, Ratchet equity indexed annuities, In Contributions to: Proceedings of the 14th Annual International AFIR Colloquium, Boston, 2004.
|
[18]
|
P. Hieber, Cliquet-style return guarantees in a regime switching Lévy model, Insurance Math. Econom., 72 (2017), 138-147.
doi: 10.1016/j.insmatheco.2016.11.009.
|
[19]
|
J. L. Kirkby, American and exotic option pricing with jump diffusions and other Lévy processes, Journal of Computational Finance, 22 (2018), 89-148.
doi: 10.21314/JCF.2018.355.
|
[20]
|
J. L. Kirkby and D. Nguyen, Equity-linked guaranteed minimum death benefits with dollar cost averaging, Insurance Math. Econom., 100 (2021), 408-428.
doi: 10.1016/j.insmatheco.2021.04.012.
|
[21]
|
M. Kijima and T. Wong, Pricing of ratchet equity-indexed annuities under stochastic interest rates, Insurance Math. Econom., 41 (2007), 317-338.
doi: 10.1016/j.insmatheco.2006.11.005.
|
[22]
|
H. Lee, Pricing equity-indexed annuities with path-dependent options, Insurance Math. Econom., 33 (2003), 677-690.
doi: 10.1016/j.insmatheco.2003.09.006.
|
[23]
|
X. Liang, C. C. L. Tsai and Y. Lu, Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality, Insurance Math. Econom., 70 (2016), 150-161.
doi: 10.1016/j.insmatheco.2016.06.004.
|
[24]
|
L. Qian, W. Wang, R. Wang and Y. Tang, Valuation of equity-indexed annuity under stochastic mortality and interest rate, Insurance Math. Econom., 47 (2010), 123-129.
doi: 10.1016/j.insmatheco.2010.06.005.
|
[25]
|
C. C. Siu, S. C. P. Yam and H. Yang, Valuing equity-linked death benefits in a regime-switching framework, Astin Bull., 45 (2015), 355-395.
doi: 10.1017/asb.2014.32.
|
[26]
|
S. Tiong, Valuing equity-indexed annuities, N. Am. Actuar. J., 4 (2000), 149-170.
doi: 10.1080/10920277.2000.10595945.
|
[27]
|
E. R. Ulm, The effect of the real option to transfer on the value of guaranteed minimum death benefits, Journal of Risk and Insurance, 73 (2006), 43-69.
doi: 10.1111/j.1539-6975.2006.00165.x.
|
[28]
|
E. R. Ulm, Analytic solution for return of premium and rollup guaranteed minimum death benefit options under some simple mortality laws, Astin Bull., 38 (2008), 543-563.
doi: 10.1017/S0515036100015282.
|
[29]
|
E. R. Ulm, Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws, Insurance Math. Econom., 58 (2014), 14-23.
doi: 10.1016/j.insmatheco.2014.06.003.
|
[30]
|
Z. Zhang, Y. Yong and W. Yu, Valuing equity-linked death benefits in general exponential Lévy models, J. Comput. Appl. Math., 365 (2020), 112377, 18pp.
doi: 10.1016/j.cam.2019.112377.
|