
-
Previous Article
Financing and ordering decisions in a capital-constrained and risk-averse supply chain for the monopolist and non-monopolist supplier
- JIMO Home
- This Issue
-
Next Article
Optimal control of fish-feeding in a three-dimensional calm freshwater pond considering environmental concern
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
The inventory replenishment policy in an uncertain production-inventory-routing system
1. | School of Information Science, Guangzhou Xinhua University, Guangzhou 510520, China |
2. | School of Information Technology and Management, University of International Business and Economics, Beijing 100029, China |
This study introduces an uncertain programming model for the integrated production routing problem (PRP) in an uncertain production-inventory-routing system. Based on uncertainty theory, an uncertain programming model is proposed firstly and then transformed into a deterministic and equivalent model. The study further probes into different types of replenishment policies under the condition of uncertain demands, mainly the uncertain maximum level (UML) policy and the uncertain order-up to level (UOU) policy. Some inequalities are put forward to define the UML policy and the UOU policy under the uncertain environments, and the influences brought by uncertain demands are highlighted. The overall costs with optimal solution of the uncertain decision model grow with the increase of the confidence levels. And they are simultaneously affected by the variances of uncertain variables but rely on the value of confidence levels. Results show that when the confidence levels are not less than 0.5, the cost difference between the two policies begins to narrow along with the increase of the confidence levels and the variances of uncertain variables, eventually being trending to zero. When there are higher confidence levels and relatively large uncertainty in realistic applications, in which the solution scale is escalated, being conducive to its efficiency advantage, the comprehensive advantages of the UOU policy is obvious.
References:
[1] |
N. Absi, C. Archetti, S. Dauzère-Pérès and D. Feillet,
A two phase iterative heuristic approach for the production routing problem, Transportation Science, 49 (2015), 784-795.
doi: 10.1287/trsc.2014.0523. |
[2] |
N. Absi, C. Archetti, S. Dauzère-Pérès, D. Feillet and M. G. Speranza,
Comparing sequential and integrated approaches for the production routing problem, European Journal of Operational Research, 269 (2018), 633-646.
doi: 10.1016/j.ejor.2018.01.052. |
[3] |
Y. Adulyasak, J.-F. Cordeau and R. Jans,
Benders decomposition for production routing under demand uncertainty, Operational Research, 63 (2015), 851-868.
doi: 10.1287/opre.2015.1401. |
[4] |
A. Agra, M. Christiansen, K. S. Ivarsøy, I. E. Solhaug and A. Tomasgard,
Combined ship routing and inventory management in the salmon farming industry, Annals of Operations Research, 253 (2017), 799-823.
doi: 10.1007/s10479-015-2088-x. |
[5] |
A. Agra, C. Requejo and F. Rodrigues,
A hybrid heuristic for a stochastic production-inventory-routing problem, Electronic Notes in Discrete Mathematics, 64 (2018), 345-354.
doi: 10.1016/j.endm.2018.02.009. |
[6] |
C. Archetti, L. Bertazzi, G. Paletta and M. G. Speranza,
Analysis of the maximum level policy in a production distribution system, Computers and Operations Research, 38 (2011), 1731-1746.
doi: 10.1016/j.cor.2011.03.002. |
[7] |
C. Archetti and M. G. Speranza,
The inventory routing problem: The value of integration, International Transactions in Operational Research, 23 (2016), 393-407.
doi: 10.1111/itor.12226. |
[8] |
J. F. Bard and N. Nananukul,
Heuristics for a multiperiod inventory routing problem with production decisions, Computers and Industrial Engineering, 57 (2009), 713-723.
doi: 10.1016/j.cie.2009.01.020. |
[9] |
J. F. Bard and N. Nananukul,
The integrated production inventor distribution routing problem, Journal of Scheduling, 12 (2009), 257-280.
doi: 10.1007/s10951-008-0081-9. |
[10] |
T. Bayley, H. Süral and J. H. Bookbinder,
A hybrid benders approach for coordinated capacitated lot-sizing of multiple product families with set-up times, International Journal of Production Research, 56 (2018), 1326-1344.
doi: 10.1080/00207543.2017.1338778. |
[11] |
T. Bektas, G. Laporte and D. Vigo,
Integrated vehicle routing problems, Computers and Operations Research, 55 (2015), 126.
doi: 10.1016/j.cor.2014.08.008. |
[12] |
L. Bertazzi and M. G. Speranza,
Inventory routing problems: An introduction, EURO J. Transp Logist, 1 (2012), 307-326.
doi: 10.1007/s13676-012-0016-7. |
[13] |
Y. Boutarfa, A. Senoussi, N. K. Mouss and N. Brahimi,
A tabu search heuristic for an integrated production distribution problem with clustered retailers, IFAC-PapersOnLine, 49 (2016), 1514-1519.
doi: 10.1016/j.ifacol.2016.07.794. |
[14] |
N. Brahimi and T. Aouam,
Multi-item production routing problem with backordering: A MILP approach, International Journal of Production Research, 54 (2015), 1076-1093.
doi: 10.1080/00207543.2015.1047971. |
[15] |
P. Chandra,
A dynamic distribution model with warehouse and customer replenishment requirements, Journal of the Operational Research Society, 44 (1993), 681-692.
doi: 10.1057/jors.1993.117. |
[16] |
Z. Chen, Y. Lan, R. Zhao and C. Shang,
Deadline-based incentive contracts in project management with cost salience, Fuzzy Optimization and Decision Making, 18 (2019), 451-473.
doi: 10.1007/s10700-019-09302-y. |
[17] |
J. F. Côté, G. Guastaroba and M. G. Speranza,
The value of integrating loading and routing, European Journal of Operational Research, 257 (2016), 89-105.
doi: 10.1016/j.ejor.2016.06.072. |
[18] |
M. Darvish and L. C. Coelho,
Sequential versus integrated optimization: Production, location, inventory control, and distribution, European Journal of Operational Research, 268 (2018), 203-214.
doi: 10.1016/j.ejor.2018.01.028. |
[19] |
X. Fang, Y. Du and Y. Qiu,
Reducing carbon emissions in a closed-loop production routing problem with simultaneous pickups and deliveries under carbon cap-and-trade, Sustainability, 9 (2017), 2198.
doi: 10.3390/su9122198. |
[20] |
L.-L. Fu, M. A. Aloulou and C. Triki,
Integrated production scheduling and vehicle routing problem with job splitting and delivery time windows, International Journal of Production Research, 55 (2017), 5942-5957.
doi: 10.1080/00207543.2017.1308572. |
[21] |
A. Ghasemkhani, R. Tavakkoli-Moghaddam, Y. Rahimi, S. Shahnejat-Bushehri and H. Tavakkoli-Moghaddam, Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms, International Journal of Production Research, (2021).
doi: 10.1080/00207543.2021.1902013. |
[22] |
A. H. Golsefidi and M. R. A. Jokar,
A robust optimization approach for the production-inventory-routing problem with simultaneous pickup and delivery, Computers and Industrial Engineering, 143 (2020), 106388.
doi: 10.1016/j.cie.2020.106388. |
[23] |
F. Hein and C. Almeder,
Quantitative insights into the integrated supply vehicle routing and production planning problem, International Journal of Production Economics, 177 (2016), 66-76.
doi: 10.1016/j.ijpe.2016.04.014. |
[24] |
H. Ke, T. Su and Y. Ni,
Uncertain random multilevel programming with application to production control problem, Soft Computing, 19 (2015), 1739-1746.
doi: 10.1007/s00500-014-1361-2. |
[25] |
R. S. Kumar, K. Kondapaneni, V. Dixit, A. Goswami, L. S. Thakur and M. K. Tiwari,
Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach, Computers and Industrial Engineering, 99 (2016), 29-40.
doi: 10.1016/j.cie.2015.07.003. |
[26] |
M. Lai, X. Cai and X. Li,
Mechanism design for collaborative production-distribution planning with shipment consolidation, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 137-159.
doi: 10.1016/j.tre.2017.07.014. |
[27] |
L. Lei, S. Liu, A. Ruszczynski and S. Park,
On the integrated production, inventory, and distribution routing problem, IIE Transactions, 38 (2006), 955-970.
doi: 10.1080/07408170600862688. |
[28] |
Y. Li, F. Chu and K. Chen,
Coordinated production inventory routing planning for perishable food, IFAC-PapersOnLine, 50 (2017), 4246-4251.
doi: 10.1016/j.ifacol.2017.08.829. |
[29] |
Y. Li, F. Chu, C. Feng, C. Chu and M. Zhou,
Integrated production inventory routing planning for intelligent food logistics systems, IEEE Transactions on Intelligent Transportation Systems, 3 (2019), 867-878.
doi: 10.1109/TITS.2018.2835145. |
[30] |
Y. Li, X. Li and S. Zhang,
Optimal pricing of customized bus services and ride-sharing based on a competitive game model, Omega, 103 (2021), 102413.
doi: 10.1016/j.omega.2021.102413. |
[31] |
B. Liu, Uncertainty Theory, 2$^nd$ edition, Springer, Berlin, 2007. |
[32] |
B. Liu,
Some research problems in uncertainty theory, Journal of Uncertain systems, 3 (2009), 3-10.
|
[33] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer, Berlin, 2010. |
[34] |
P. Liu, A. Hendalianpour, J. Razmi and M. S. Sangari,
A solution algorithm for integrated production-inventory-routing of perishable goods with transshipment and uncertain demand, Complex and Intelligent Systems, 7 (2021), 1349-1365.
doi: 10.1007/s40747-020-00264-y. |
[35] |
W. Ma, Y. Che, H. Huang and H. Ke,
Resource-constrained project scheduling problem with uncertain durations and renewable resources, International Journal of Machine Learning and Cybernetics, 7 (2016), 613-621.
doi: 10.1007/s13042-015-0444-4. |
[36] |
P. L. Miranda, R. Morabito and D. Ferreira,
Optimization model for a production, inventory, distribution and routing problem in small furniture companies, Top, 26 (2018), 30-67.
doi: 10.1007/s11750-017-0448-1. |
[37] |
I. Moon, Y. J. Jeong and S. Saha,
Fuzzy bi-objective production distribution planning problem under the carbon emission constraint, Sustainability, 8 (2016), 798.
doi: 10.3390/su8080798. |
[38] |
A. Nananukul, Lot-Sizing and Inventory Routing for a Production-Distribution Supply Chain, phdthesis, Ph.D thesis, The University of Texas at Austin, 2008. |
[39] |
Y. Qiu, M. Ni, L. Wang, Q. Li, X. Fang and P. M. Pardalos,
Production routing problems with reverse logistics and remanufacturing, Transportation Research Part E: Logistics and Transportation, 111 (2018), 87-100.
doi: 10.1016/j.tre.2018.01.009. |
[40] |
Y. Qiu, L. Wang, X. Xu, X. Fang and P. M. Pardalos,
A variable neighborhood search heuristic algorithm for production routing problems, Applied Soft Computing, 66 (2018), 311-318.
doi: 10.1016/j.asoc.2018.02.032. |
[41] |
Y. Qiu, L. Wang, X. Xu, X. Fang and P. M. Pardalos,
Formulations and branch-and-cut algorithms for multi-product multi-vehicle production routing problems with startup cost, Expert Systems with Applications, 98 (2018), 1-10.
doi: 10.1016/j.eswa.2018.01.006. |
[42] |
V. Schmid, K. F. Doerner and G. Laporte,
Rich routing problems arising in supply chain management, European Journal of Operational Research, 224 (2013), 435-448.
doi: 10.1016/j.ejor.2012.08.014. |
[43] |
A. Senoussi, S. Dauzère-Pérès, N. Brahimi, B. Penz and N. K. Mouss,
Heuristics based genetic algorithm for capacitated multi vehicle production inventory distribution problem, Computers and Operations Research, 96 (2018), 108-119.
doi: 10.1016/j.cor.2018.04.010. |
[44] |
J. Shen and K. Zhu,
Uncertain supply chain problem with price and effort, International Journal of Fuzzy Systems, 20 (2018), 1145-1158.
doi: 10.1007/s40815-017-0407-x. |
[45] |
O. Solyali, J. F. Cordeau and G. Laporte,
Robust inventory routing under demand uncertainty, Transportation Science, 46 (2012), 327-340.
doi: 10.1287/trsc.1110.0387. |
[46] |
M. Stalhane, H. Andersson, M. Christiansen and K. Fagerholt,
Vendor managed inventory in tramp shipping, Omega, 47 (2014), 60-72.
doi: 10.1016/j.omega.2014.03.004. |
[47] |
B. Vahdani, S. T. A. Niaki and S. Aslanzade,
Production-inventory-routing coordination with capacity and time window constraints for perishable products: Heuristic and meta-heuristic algorithms, Journal of Cleaner Production, 161 (2017), 598-618.
doi: 10.1016/j.jclepro.2017.05.113. |
[48] |
Q. Zhang, A. Sundaramoorthy, I. E. Grossmann and J. M. Pinto,
Multiscale production routing in multicommodity supply chains with complex production facilities, Computers and Operations Research, 79 (2017), 207-222.
doi: 10.1016/j.cor.2016.11.001. |
[49] |
J. Zhou, F. Yang and K. Wang,
Multi-objective optimization in uncertain random environments, Fuzzy Optimization and Decision Making, 13 (2014), 397-413.
doi: 10.1007/s10700-014-9183-3. |
show all references
References:
[1] |
N. Absi, C. Archetti, S. Dauzère-Pérès and D. Feillet,
A two phase iterative heuristic approach for the production routing problem, Transportation Science, 49 (2015), 784-795.
doi: 10.1287/trsc.2014.0523. |
[2] |
N. Absi, C. Archetti, S. Dauzère-Pérès, D. Feillet and M. G. Speranza,
Comparing sequential and integrated approaches for the production routing problem, European Journal of Operational Research, 269 (2018), 633-646.
doi: 10.1016/j.ejor.2018.01.052. |
[3] |
Y. Adulyasak, J.-F. Cordeau and R. Jans,
Benders decomposition for production routing under demand uncertainty, Operational Research, 63 (2015), 851-868.
doi: 10.1287/opre.2015.1401. |
[4] |
A. Agra, M. Christiansen, K. S. Ivarsøy, I. E. Solhaug and A. Tomasgard,
Combined ship routing and inventory management in the salmon farming industry, Annals of Operations Research, 253 (2017), 799-823.
doi: 10.1007/s10479-015-2088-x. |
[5] |
A. Agra, C. Requejo and F. Rodrigues,
A hybrid heuristic for a stochastic production-inventory-routing problem, Electronic Notes in Discrete Mathematics, 64 (2018), 345-354.
doi: 10.1016/j.endm.2018.02.009. |
[6] |
C. Archetti, L. Bertazzi, G. Paletta and M. G. Speranza,
Analysis of the maximum level policy in a production distribution system, Computers and Operations Research, 38 (2011), 1731-1746.
doi: 10.1016/j.cor.2011.03.002. |
[7] |
C. Archetti and M. G. Speranza,
The inventory routing problem: The value of integration, International Transactions in Operational Research, 23 (2016), 393-407.
doi: 10.1111/itor.12226. |
[8] |
J. F. Bard and N. Nananukul,
Heuristics for a multiperiod inventory routing problem with production decisions, Computers and Industrial Engineering, 57 (2009), 713-723.
doi: 10.1016/j.cie.2009.01.020. |
[9] |
J. F. Bard and N. Nananukul,
The integrated production inventor distribution routing problem, Journal of Scheduling, 12 (2009), 257-280.
doi: 10.1007/s10951-008-0081-9. |
[10] |
T. Bayley, H. Süral and J. H. Bookbinder,
A hybrid benders approach for coordinated capacitated lot-sizing of multiple product families with set-up times, International Journal of Production Research, 56 (2018), 1326-1344.
doi: 10.1080/00207543.2017.1338778. |
[11] |
T. Bektas, G. Laporte and D. Vigo,
Integrated vehicle routing problems, Computers and Operations Research, 55 (2015), 126.
doi: 10.1016/j.cor.2014.08.008. |
[12] |
L. Bertazzi and M. G. Speranza,
Inventory routing problems: An introduction, EURO J. Transp Logist, 1 (2012), 307-326.
doi: 10.1007/s13676-012-0016-7. |
[13] |
Y. Boutarfa, A. Senoussi, N. K. Mouss and N. Brahimi,
A tabu search heuristic for an integrated production distribution problem with clustered retailers, IFAC-PapersOnLine, 49 (2016), 1514-1519.
doi: 10.1016/j.ifacol.2016.07.794. |
[14] |
N. Brahimi and T. Aouam,
Multi-item production routing problem with backordering: A MILP approach, International Journal of Production Research, 54 (2015), 1076-1093.
doi: 10.1080/00207543.2015.1047971. |
[15] |
P. Chandra,
A dynamic distribution model with warehouse and customer replenishment requirements, Journal of the Operational Research Society, 44 (1993), 681-692.
doi: 10.1057/jors.1993.117. |
[16] |
Z. Chen, Y. Lan, R. Zhao and C. Shang,
Deadline-based incentive contracts in project management with cost salience, Fuzzy Optimization and Decision Making, 18 (2019), 451-473.
doi: 10.1007/s10700-019-09302-y. |
[17] |
J. F. Côté, G. Guastaroba and M. G. Speranza,
The value of integrating loading and routing, European Journal of Operational Research, 257 (2016), 89-105.
doi: 10.1016/j.ejor.2016.06.072. |
[18] |
M. Darvish and L. C. Coelho,
Sequential versus integrated optimization: Production, location, inventory control, and distribution, European Journal of Operational Research, 268 (2018), 203-214.
doi: 10.1016/j.ejor.2018.01.028. |
[19] |
X. Fang, Y. Du and Y. Qiu,
Reducing carbon emissions in a closed-loop production routing problem with simultaneous pickups and deliveries under carbon cap-and-trade, Sustainability, 9 (2017), 2198.
doi: 10.3390/su9122198. |
[20] |
L.-L. Fu, M. A. Aloulou and C. Triki,
Integrated production scheduling and vehicle routing problem with job splitting and delivery time windows, International Journal of Production Research, 55 (2017), 5942-5957.
doi: 10.1080/00207543.2017.1308572. |
[21] |
A. Ghasemkhani, R. Tavakkoli-Moghaddam, Y. Rahimi, S. Shahnejat-Bushehri and H. Tavakkoli-Moghaddam, Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms, International Journal of Production Research, (2021).
doi: 10.1080/00207543.2021.1902013. |
[22] |
A. H. Golsefidi and M. R. A. Jokar,
A robust optimization approach for the production-inventory-routing problem with simultaneous pickup and delivery, Computers and Industrial Engineering, 143 (2020), 106388.
doi: 10.1016/j.cie.2020.106388. |
[23] |
F. Hein and C. Almeder,
Quantitative insights into the integrated supply vehicle routing and production planning problem, International Journal of Production Economics, 177 (2016), 66-76.
doi: 10.1016/j.ijpe.2016.04.014. |
[24] |
H. Ke, T. Su and Y. Ni,
Uncertain random multilevel programming with application to production control problem, Soft Computing, 19 (2015), 1739-1746.
doi: 10.1007/s00500-014-1361-2. |
[25] |
R. S. Kumar, K. Kondapaneni, V. Dixit, A. Goswami, L. S. Thakur and M. K. Tiwari,
Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach, Computers and Industrial Engineering, 99 (2016), 29-40.
doi: 10.1016/j.cie.2015.07.003. |
[26] |
M. Lai, X. Cai and X. Li,
Mechanism design for collaborative production-distribution planning with shipment consolidation, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 137-159.
doi: 10.1016/j.tre.2017.07.014. |
[27] |
L. Lei, S. Liu, A. Ruszczynski and S. Park,
On the integrated production, inventory, and distribution routing problem, IIE Transactions, 38 (2006), 955-970.
doi: 10.1080/07408170600862688. |
[28] |
Y. Li, F. Chu and K. Chen,
Coordinated production inventory routing planning for perishable food, IFAC-PapersOnLine, 50 (2017), 4246-4251.
doi: 10.1016/j.ifacol.2017.08.829. |
[29] |
Y. Li, F. Chu, C. Feng, C. Chu and M. Zhou,
Integrated production inventory routing planning for intelligent food logistics systems, IEEE Transactions on Intelligent Transportation Systems, 3 (2019), 867-878.
doi: 10.1109/TITS.2018.2835145. |
[30] |
Y. Li, X. Li and S. Zhang,
Optimal pricing of customized bus services and ride-sharing based on a competitive game model, Omega, 103 (2021), 102413.
doi: 10.1016/j.omega.2021.102413. |
[31] |
B. Liu, Uncertainty Theory, 2$^nd$ edition, Springer, Berlin, 2007. |
[32] |
B. Liu,
Some research problems in uncertainty theory, Journal of Uncertain systems, 3 (2009), 3-10.
|
[33] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer, Berlin, 2010. |
[34] |
P. Liu, A. Hendalianpour, J. Razmi and M. S. Sangari,
A solution algorithm for integrated production-inventory-routing of perishable goods with transshipment and uncertain demand, Complex and Intelligent Systems, 7 (2021), 1349-1365.
doi: 10.1007/s40747-020-00264-y. |
[35] |
W. Ma, Y. Che, H. Huang and H. Ke,
Resource-constrained project scheduling problem with uncertain durations and renewable resources, International Journal of Machine Learning and Cybernetics, 7 (2016), 613-621.
doi: 10.1007/s13042-015-0444-4. |
[36] |
P. L. Miranda, R. Morabito and D. Ferreira,
Optimization model for a production, inventory, distribution and routing problem in small furniture companies, Top, 26 (2018), 30-67.
doi: 10.1007/s11750-017-0448-1. |
[37] |
I. Moon, Y. J. Jeong and S. Saha,
Fuzzy bi-objective production distribution planning problem under the carbon emission constraint, Sustainability, 8 (2016), 798.
doi: 10.3390/su8080798. |
[38] |
A. Nananukul, Lot-Sizing and Inventory Routing for a Production-Distribution Supply Chain, phdthesis, Ph.D thesis, The University of Texas at Austin, 2008. |
[39] |
Y. Qiu, M. Ni, L. Wang, Q. Li, X. Fang and P. M. Pardalos,
Production routing problems with reverse logistics and remanufacturing, Transportation Research Part E: Logistics and Transportation, 111 (2018), 87-100.
doi: 10.1016/j.tre.2018.01.009. |
[40] |
Y. Qiu, L. Wang, X. Xu, X. Fang and P. M. Pardalos,
A variable neighborhood search heuristic algorithm for production routing problems, Applied Soft Computing, 66 (2018), 311-318.
doi: 10.1016/j.asoc.2018.02.032. |
[41] |
Y. Qiu, L. Wang, X. Xu, X. Fang and P. M. Pardalos,
Formulations and branch-and-cut algorithms for multi-product multi-vehicle production routing problems with startup cost, Expert Systems with Applications, 98 (2018), 1-10.
doi: 10.1016/j.eswa.2018.01.006. |
[42] |
V. Schmid, K. F. Doerner and G. Laporte,
Rich routing problems arising in supply chain management, European Journal of Operational Research, 224 (2013), 435-448.
doi: 10.1016/j.ejor.2012.08.014. |
[43] |
A. Senoussi, S. Dauzère-Pérès, N. Brahimi, B. Penz and N. K. Mouss,
Heuristics based genetic algorithm for capacitated multi vehicle production inventory distribution problem, Computers and Operations Research, 96 (2018), 108-119.
doi: 10.1016/j.cor.2018.04.010. |
[44] |
J. Shen and K. Zhu,
Uncertain supply chain problem with price and effort, International Journal of Fuzzy Systems, 20 (2018), 1145-1158.
doi: 10.1007/s40815-017-0407-x. |
[45] |
O. Solyali, J. F. Cordeau and G. Laporte,
Robust inventory routing under demand uncertainty, Transportation Science, 46 (2012), 327-340.
doi: 10.1287/trsc.1110.0387. |
[46] |
M. Stalhane, H. Andersson, M. Christiansen and K. Fagerholt,
Vendor managed inventory in tramp shipping, Omega, 47 (2014), 60-72.
doi: 10.1016/j.omega.2014.03.004. |
[47] |
B. Vahdani, S. T. A. Niaki and S. Aslanzade,
Production-inventory-routing coordination with capacity and time window constraints for perishable products: Heuristic and meta-heuristic algorithms, Journal of Cleaner Production, 161 (2017), 598-618.
doi: 10.1016/j.jclepro.2017.05.113. |
[48] |
Q. Zhang, A. Sundaramoorthy, I. E. Grossmann and J. M. Pinto,
Multiscale production routing in multicommodity supply chains with complex production facilities, Computers and Operations Research, 79 (2017), 207-222.
doi: 10.1016/j.cor.2016.11.001. |
[49] |
J. Zhou, F. Yang and K. Wang,
Multi-objective optimization in uncertain random environments, Fuzzy Optimization and Decision Making, 13 (2014), 397-413.
doi: 10.1007/s10700-014-9183-3. |




Indices for retailers, where |
|
Index for periods or days, |
|
Set of retailers, |
|
Set of vehicles, |
Indices for retailers, where |
|
Index for periods or days, |
|
Set of retailers, |
|
Set of vehicles, |
Uncertain demand at retailer |
|
Uncertain fixed production setup cost. | |
Uncertain unit production cost. | |
Uncertain unit inventory holding cost at the plant or retailer. | |
Uncertain transportation cost from node |
|
Production capacity of the plant. | |
The number of vehicles. | |
Capacity of vehicle |
|
Initial inventory at retailer |
|
Maximum inventory level at the plant and retailers. | |
Confidence level about uncertain costs. | |
Confidence level of node |
|
Confidence level of node |
Uncertain demand at retailer |
|
Uncertain fixed production setup cost. | |
Uncertain unit production cost. | |
Uncertain unit inventory holding cost at the plant or retailer. | |
Uncertain transportation cost from node |
|
Production capacity of the plant. | |
The number of vehicles. | |
Capacity of vehicle |
|
Initial inventory at retailer |
|
Maximum inventory level at the plant and retailers. | |
Confidence level about uncertain costs. | |
Confidence level of node |
|
Confidence level of node |
Equal to 1 if there is production at the plant in period |
|
Production quantity in period |
|
Equal to 1 if vehicle |
|
Load of vehicle |
|
Quantity delivered to retailer |
|
Equal to 1 if node |
Equal to 1 if there is production at the plant in period |
|
Production quantity in period |
|
Equal to 1 if vehicle |
|
Load of vehicle |
|
Quantity delivered to retailer |
|
Equal to 1 if node |
Situation | Policy | Lower Limit | Upper Limit | Interval |
Deterministic | MLI | 0 | + |
[0, |
Linear | UMLI | + |
[ |
|
Normal | UMLI | + |
[ |
Situation | Policy | Lower Limit | Upper Limit | Interval |
Deterministic | MLI | 0 | + |
[0, |
Linear | UMLI | + |
[ |
|
Normal | UMLI | + |
[ |
Situation | Policy | Lower Limit | Upper Limit | Interval |
Deterministic | ML | 0 | [0, |
|
Linear | UML | [ |
||
Normal | UML | [ |
Situation | Policy | Lower Limit | Upper Limit | Interval |
Deterministic | ML | 0 | [0, |
|
Linear | UML | [ |
||
Normal | UML | [ |
Situation | Policy | Lower Limit | Upper Limit | Interval |
Deterministic | OU | 0 | ||
Linear | UOU | |||
Normal | UOU |
Situation | Policy | Lower Limit | Upper Limit | Interval |
Deterministic | OU | 0 | ||
Linear | UOU | |||
Normal | UOU |
Parameters | Values |
Parameters | Values |
( |
Lower Limit | Upper limit | Gap | |
( |
||||
( |
= | |||
( |
||||
( |
= | |||
( |
= | = | = | = |
( |
= | |||
( |
||||
( |
= | |||
( |
( |
Lower Limit | Upper limit | Gap | |
( |
||||
( |
= | |||
( |
||||
( |
= | |||
( |
= | = | = | = |
( |
= | |||
( |
||||
( |
= | |||
( |
( |
Lower Limit | Upper limit | Gap | |
( |
||||
( |
= | = | ||
( |
||||
( |
= | |||
( |
= | = | = | = |
( |
= | |||
( |
||||
( |
= | = | ||
( |
( |
Lower Limit | Upper limit | Gap | |
( |
||||
( |
= | = | ||
( |
||||
( |
= | |||
( |
= | = | = | = |
( |
= | |||
( |
||||
( |
= | = | ||
( |
[0.0, 0.3) | 0.1 | 0.936 | 0.858 | 0.780 | 0.702 | 0.624 |
[0.0, 0.3) | 0.3 | 0.809 | 0.736 | 0.663 | 0.590 | 0.457 |
[0.0, 0.3) | 0.5 | 0.698 | 0.630 | 0.561 | 0.438 | 0.372 |
[0.0, 0.3) | 0.7 | 0.560 | 0.472 | 0.409 | 0.347 | 0.264 |
[0.0, 0.3) | 0.9 | 0.443 | 0.384 | 0.325 | 0.347 | 0.190 |
[0.3, 0.6) | 0.1 | 2.028 | 1.726 | 1.424 | 1.122 | 0.803 |
[0.3, 0.6) | 0.3 | 1.364 | 1.284 | 0.893 | 0.651 | 0.354 |
[0.3, 0.6) | 0.5 | 0.948 | 0.754 | 0.561 | 0.294 | 0.000 |
[0.3, 0.6) | 0.7 | 0.593 | 0.421 | 0.233 | 0.000 | 0.000 |
[0.3, 0.6) | 0.9 | 0.361 | 0.193 | 0.000 | 0.000 | 0.000 |
[0.6, 0.9) | 0.1 | 4.432 | 3.646 | 2.860 | 2.055 | 1.205 |
[0.6, 0.9) | 0.3 | 2.118 | 1.664 | 1.211 | 0.736 | 0.218 |
[0.6, 0.9) | 0.5 | 1.197 | 0.879 | 0.561 | 0.154 | |
[0.6, 0.9) | 0.7 | 0.630 | 0.380 | 0.106 | ||
[0.6, 0.9) | 0.9 | 0.304 | 0.080 |
[0.0, 0.3) | 0.1 | 0.936 | 0.858 | 0.780 | 0.702 | 0.624 |
[0.0, 0.3) | 0.3 | 0.809 | 0.736 | 0.663 | 0.590 | 0.457 |
[0.0, 0.3) | 0.5 | 0.698 | 0.630 | 0.561 | 0.438 | 0.372 |
[0.0, 0.3) | 0.7 | 0.560 | 0.472 | 0.409 | 0.347 | 0.264 |
[0.0, 0.3) | 0.9 | 0.443 | 0.384 | 0.325 | 0.347 | 0.190 |
[0.3, 0.6) | 0.1 | 2.028 | 1.726 | 1.424 | 1.122 | 0.803 |
[0.3, 0.6) | 0.3 | 1.364 | 1.284 | 0.893 | 0.651 | 0.354 |
[0.3, 0.6) | 0.5 | 0.948 | 0.754 | 0.561 | 0.294 | 0.000 |
[0.3, 0.6) | 0.7 | 0.593 | 0.421 | 0.233 | 0.000 | 0.000 |
[0.3, 0.6) | 0.9 | 0.361 | 0.193 | 0.000 | 0.000 | 0.000 |
[0.6, 0.9) | 0.1 | 4.432 | 3.646 | 2.860 | 2.055 | 1.205 |
[0.6, 0.9) | 0.3 | 2.118 | 1.664 | 1.211 | 0.736 | 0.218 |
[0.6, 0.9) | 0.5 | 1.197 | 0.879 | 0.561 | 0.154 | |
[0.6, 0.9) | 0.7 | 0.630 | 0.380 | 0.106 | ||
[0.6, 0.9) | 0.9 | 0.304 | 0.080 |
[0.0, 0.3) | 0.1 | 1.448 | 1.369 | 1.278 | 1.199 | 1.120 |
[0.0, 0.3) | 0.3 | 1.268 | 1.195 | 1.215 | 1.048 | 0.975 |
[0.0, 0.3) | 0.5 | 1.128 | 1.060 | 0.991 | 0.923 | 0.854 |
[0.0, 0.3) | 0.7 | 0.991 | 0.927 | 0.862 | 0.798 | 0.734 |
[0.0, 0.3) | 0.9 | 0.870 | 0.809 | 0.749 | 0.689 | 0.629 |
[0.3, 0.6) | 0.1 | 2.843 | 2.531 | 2.219 | 1.906 | 1.570 |
[0.3, 0.6) | 0.3 | 1.959 | 1.718 | 1.478 | 1.194 | 0.938 |
[0.3, 0.6) | 0.5 | 1.378 | 1.184 | 0.991 | 0.798 | 0.590 |
[0.3, 0.6) | 0.7 | 0.989 | 0.828 | 0.666 | 0.487 | 0.299 |
[0.3, 0.6) | 0.9 | 0.710 | 0.571 | 0.405 | 0.267 | 0.000 |
[0.6, 0.9) | 0.1 | 5.495 | 4.709 | 3.923 | 3.118 | 2.253 |
[0.6, 0.9) | 0.3 | 2.850 | 2.384 | 1.918 | 1.441 | 0.928 |
[0.6, 0.9) | 0.5 | 1.627 | 1.309 | 0.991 | 0.666 | 0.278 |
[0.6, 0.9) | 0.7 | 0.989 | 0.748 | 0.507 | 0.234 | |
[0.6, 0.9) | 0.9 | 0.599 | 0.385 | 0.178 |
[0.0, 0.3) | 0.1 | 1.448 | 1.369 | 1.278 | 1.199 | 1.120 |
[0.0, 0.3) | 0.3 | 1.268 | 1.195 | 1.215 | 1.048 | 0.975 |
[0.0, 0.3) | 0.5 | 1.128 | 1.060 | 0.991 | 0.923 | 0.854 |
[0.0, 0.3) | 0.7 | 0.991 | 0.927 | 0.862 | 0.798 | 0.734 |
[0.0, 0.3) | 0.9 | 0.870 | 0.809 | 0.749 | 0.689 | 0.629 |
[0.3, 0.6) | 0.1 | 2.843 | 2.531 | 2.219 | 1.906 | 1.570 |
[0.3, 0.6) | 0.3 | 1.959 | 1.718 | 1.478 | 1.194 | 0.938 |
[0.3, 0.6) | 0.5 | 1.378 | 1.184 | 0.991 | 0.798 | 0.590 |
[0.3, 0.6) | 0.7 | 0.989 | 0.828 | 0.666 | 0.487 | 0.299 |
[0.3, 0.6) | 0.9 | 0.710 | 0.571 | 0.405 | 0.267 | 0.000 |
[0.6, 0.9) | 0.1 | 5.495 | 4.709 | 3.923 | 3.118 | 2.253 |
[0.6, 0.9) | 0.3 | 2.850 | 2.384 | 1.918 | 1.441 | 0.928 |
[0.6, 0.9) | 0.5 | 1.627 | 1.309 | 0.991 | 0.666 | 0.278 |
[0.6, 0.9) | 0.7 | 0.989 | 0.748 | 0.507 | 0.234 | |
[0.6, 0.9) | 0.9 | 0.599 | 0.385 | 0.178 |
[0.0, 0.3) | 0.1 | 2.482 | 2.402 | 2.322 | 2.243 | 2.163 |
[0.0, 0.3) | 0.3 | 2.224 | 2.150 | 2.076 | 2.002 | 1.928 |
[0.0, 0.3) | 0.5 | 2.000 | 1.932 | 1.863 | 1.794 | 1.725 |
[0.0, 0.3) | 0.7 | 1.799 | 1.735 | 1.671 | 1.606 | 1.542 |
[0.0, 0.3) | 0.9 | 1.628 | 1.568 | 1.507 | 1.447 | 1.387 |
[0.3, 0.6) | 0.1 | 4.233 | 3.921 | 3.608 | 3.296 | 2.960 |
[0.3, 0.6) | 0.3 | 3.029 | 2.789 | 2.548 | 2.308 | 2.049 |
[0.3, 0.6) | 0.5 | 2.251 | 2.057 | 1.863 | 1.669 | 1.460 |
[0.3, 0.6) | 0.7 | 1.711 | 1.550 | 1.388 | 1.226 | 1.052 |
[0.3, 0.6) | 0.9 | 1.329 | 1.190 | 1.051 | 0.912 | 0.762 |
[0.6, 0.9) | 0.1 | 7.621 | 6.835 | 6.049 | 5.244 | 4.379 |
[0.6, 0.9) | 0.3 | 4.110 | 3.644 | 3.178 | 2.701 | 2.188 |
[0.6, 0.9) | 0.5 | 2.501 | 2.182 | 1.863 | 1.536 | 1.185 |
[0.6, 0.9) | 0.7 | 1.641 | 1.400 | 1.159 | 0.913 | 0.648 |
[0.6, 0.9) | 0.9 | 1.123 | 0.930 | 0.736 | 0.538 | 0.313 |
[0.0, 0.3) | 0.1 | 2.482 | 2.402 | 2.322 | 2.243 | 2.163 |
[0.0, 0.3) | 0.3 | 2.224 | 2.150 | 2.076 | 2.002 | 1.928 |
[0.0, 0.3) | 0.5 | 2.000 | 1.932 | 1.863 | 1.794 | 1.725 |
[0.0, 0.3) | 0.7 | 1.799 | 1.735 | 1.671 | 1.606 | 1.542 |
[0.0, 0.3) | 0.9 | 1.628 | 1.568 | 1.507 | 1.447 | 1.387 |
[0.3, 0.6) | 0.1 | 4.233 | 3.921 | 3.608 | 3.296 | 2.960 |
[0.3, 0.6) | 0.3 | 3.029 | 2.789 | 2.548 | 2.308 | 2.049 |
[0.3, 0.6) | 0.5 | 2.251 | 2.057 | 1.863 | 1.669 | 1.460 |
[0.3, 0.6) | 0.7 | 1.711 | 1.550 | 1.388 | 1.226 | 1.052 |
[0.3, 0.6) | 0.9 | 1.329 | 1.190 | 1.051 | 0.912 | 0.762 |
[0.6, 0.9) | 0.1 | 7.621 | 6.835 | 6.049 | 5.244 | 4.379 |
[0.6, 0.9) | 0.3 | 4.110 | 3.644 | 3.178 | 2.701 | 2.188 |
[0.6, 0.9) | 0.5 | 2.501 | 2.182 | 1.863 | 1.536 | 1.185 |
[0.6, 0.9) | 0.7 | 1.641 | 1.400 | 1.159 | 0.913 | 0.648 |
[0.6, 0.9) | 0.9 | 1.123 | 0.930 | 0.736 | 0.538 | 0.313 |
[1] |
Jiayu Shen, Yuanguo Zhu. An uncertain programming model for single machine scheduling problem with batch delivery. Journal of Industrial and Management Optimization, 2019, 15 (2) : 577-593. doi: 10.3934/jimo.2018058 |
[2] |
Bo Li, Yadong Shu. The skewness for uncertain random variable and application to portfolio selection problem. Journal of Industrial and Management Optimization, 2022, 18 (1) : 457-467. doi: 10.3934/jimo.2020163 |
[3] |
Zutong Wang, Jiansheng Guo, Mingfa Zheng, Youshe Yang. A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle. Journal of Industrial and Management Optimization, 2015, 11 (1) : 13-26. doi: 10.3934/jimo.2015.11.13 |
[4] |
Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1995-2008. doi: 10.3934/jimo.2018133 |
[5] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part II: a class of constrained nonlinear programming problems with interval objective functions. Journal of Industrial and Management Optimization, 2006, 2 (4) : 373-385. doi: 10.3934/jimo.2006.2.373 |
[6] |
Ai-Ling Yan, Gao-Yang Wang, Naihua Xiu. Robust solutions of split feasibility problem with uncertain linear operator. Journal of Industrial and Management Optimization, 2007, 3 (4) : 749-761. doi: 10.3934/jimo.2007.3.749 |
[7] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010 |
[8] |
Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1389-1414. doi: 10.3934/jimo.2019008 |
[9] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial and Management Optimization, 2006, 2 (4) : 351-371. doi: 10.3934/jimo.2006.2.351 |
[10] |
Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial and Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493 |
[11] |
Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2351-2367. doi: 10.3934/jimo.2019057 |
[12] |
Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061 |
[13] |
Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2401-2414. doi: 10.3934/jimo.2021073 |
[14] |
Jun Li, Hairong Feng, Mingchao Wang. A replenishment policy with defective products, backlog and delay of payments. Journal of Industrial and Management Optimization, 2009, 5 (4) : 867-880. doi: 10.3934/jimo.2009.5.867 |
[15] |
Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152 |
[16] |
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016 |
[17] |
Miao Tian, Xiangfeng Yang, Yi Zhang. Lookback option pricing problem of mean-reverting stock model in uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2703-2714. doi: 10.3934/jimo.2020090 |
[18] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[19] |
Guodong Yi, Xiaohong Chen, Chunqiao Tan. Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1579-1597. doi: 10.3934/jimo.2018112 |
[20] |
Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]