• Previous Article
    Product innovation, process innovation and advertising-based goodwill: A dynamic analysis in a monopoly
  • JIMO Home
  • This Issue
  • Next Article
    Design of an environmental contract under trade credits and carbon emission reduction
doi: 10.3934/jimo.2021200
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Information sharing in two-tier supply chains considering cost reduction effort and information leakage

1. 

School of Management, Xi'an Jiaotong University, Xi'an, 710049, China

2. 

School of Economics and Management, Xidian University, Xi'an, 710126, China

3. 

Business School, Central South University, Changsha, 410083, China

* Corresponding author: Xiaomei Li

Received  January 2021 Revised  September 2021 Early access November 2021

Fund Project: This resarch is supported by the Major Program of National Fund of Philosophy and Social Science of China (18ZDA104), National Natural Science Foundation of China (72102174), Ministry of Education of Humanities and Social Science Project (21XJC630004, 19YJA630068), Natural Science Basic Research Program of Shaanxi(2021JM-144), Fundamental Research Funds for the Central Universities (XJS200601)

This study investigates information sharing in two-tier supply chai-ns considering cost reduction effort and information leakage, with either upstream competition (system SC) or downstream competition (system RC). Results show that in system SC without information leakage, the retailer shares information with one supplier when suppliers are efficient in cost reduction, shares information with neither supplier when suppliers are inefficient in cost reduction, and shares information with two suppliers when suppliers are intermediate in cost reduction efficiency. nformation leakage won't affect the information sharing decisions of the retailer. In system RC with or without information leakage, both retailers share information with the supplier when the supplier is efficient in cost reduction and neither retailer shares information with the supplier when the supplier is inefficient in cost reduction. However, the threshold of cost reduction efficiency without information leakage is always lower than that with information leakage, which demonstrates that it is less likely for retailers to share information with information leakage. What's more, the two retailers choose the same information sharing strategies without information leakage but the opposite information sharing strategies with information leakage when the cost reduction efficiency is intermediate.

Citation: Xiaomei Li, Renjing Liu, Zhongquan Hu, Jiamin Dong. Information sharing in two-tier supply chains considering cost reduction effort and information leakage. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021200
References:
[1]

K. S. Anand and M. Goyal, Strategic information management under leakage in a supply chain, Management Science, 55 (2009), 438-452.  doi: 10.1287/mnsc.1080.0930.  Google Scholar

[2]

G. P. Cachon and M. Fisher, Supply chain inventory management and the value of shared information, Management Science, 46 (2000), 1032-1048.  doi: 10.1287/mnsc.46.8.1032.12029.  Google Scholar

[3]

K. CaiS. He and Z. He, Information sharing under different warranty policies with cost sharing in supply chains, Int. Trans. Oper. Res., 27 (2020), 1550-1572.  doi: 10.1111/itor.12597.  Google Scholar

[4]

E. Cao and G. Chen, Information sharing motivated by production cost reduction in a supply chain with downstream competition, Naval Research Logistics, 68 (2021), 898-907.  doi: 10.1002/nav.21977.  Google Scholar

[5]

Y. Chen and Ö. Özer, Supply chain contracts that prevent information leakage, Management Science, 65 (2019), 5619-5650.  doi: 10.1287/mnsc.2018.3200.  Google Scholar

[6]

D. Fang and Q. Ren, Optimal decision in a dual-channel supply chain under potential information leakage, Symmetry, 11 (2019), 308.  doi: 10.3390/sym11030308.  Google Scholar

[7]

Z. GuanX. ZhangM. Zhou and Y. Dan, Demand information sharing in competing supply chains with manufacturer-provided service, Int. J. Production Economics, 220 (2020), 107450.  doi: 10.1016/j.ijpe.2019.07.023.  Google Scholar

[8]

A. Y. HaQ. Tian and S. Tong, Information sharing in competing supply chains with production cost reduction, Manufacturing & Service Operations Management, 19 (2017), 246-262.  doi: 10.1287/msom.2016.0607.  Google Scholar

[9]

A. Y. HaS. Tong and H. Zhang, Sharing demand information in competing supply chains with production diseconomies, Management Science, 57 (2011), 566-581.  doi: 10.1287/mnsc.1100.1295.  Google Scholar

[10]

J. HuQ. Hu and Y. Xia, Who should invest in cost reduction in supply chains?, Int. J. Production Economics, 207 (2019), 1-18.  doi: 10.1016/j.ijpe.2018.10.002.  Google Scholar

[11]

L. Jiang and Z. Hao, Incentive-driven information dissemination in two-tier supply chains, Manufacturing & Service Operations Management, 18 (2016), 393-413.  doi: 10.1287/msom.2016.0575.  Google Scholar

[12]

S. H. Kim and S. Netessine, Collaborative cost reduction and component procurement under information asymmetry, Management Science, 59 (2013), 189-206.  doi: 10.1287/mnsc.1120.1573.  Google Scholar

[13]

G. KongS. Rajagopalan and H. Zhang, Revenue sharing and information leakage in a supply chain, Management Science, 59 (2013), 556-572.  doi: 10.1287/mnsc.1120.1627.  Google Scholar

[14]

H. L. LeeK. C. So and C. S. Tang, The value of information sharing in a two-level supply chain, Management Science, 46 (2016), 626-643.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

H. L. Lee and S. Whang, Information sharing in a supply chain, International Journal of Manufacturing Technology and Management, 1 (2000), 79-93.  doi: 10.1504/IJMTM.2000.001329.  Google Scholar

[16]

H. Lei, J. Wang, H. Yang and H. Wan, The impact of ex-post information sharing on a two-echelon supply chain with horizontal competition and capacity constraint, Annals of Operations Research, (2020), 1–27. Google Scholar

[17]

L. Li, Cournot oligopoly with information sharing, The Rand Journal of Economics, (1985), 521–536. Google Scholar

[18]

L. Li, Information sharing in a supply chain with horizontal competition, Management Science, 48 (2002), 1196-1212.   Google Scholar

[19]

X. LiJ. Chen and X. Ai, Contract design in a cross-sales supply chain with demand information asymmetry, European J. Oper. Res., 275 (2019), 939-956.  doi: 10.1016/j.ejor.2018.12.023.  Google Scholar

[20]

L. Li and H. Zhang, Confidentiality and information sharing in supply chain coordination, Management Science, 54 (2008), 1467-1481.  doi: 10.1287/mnsc.1070.0851.  Google Scholar

[21]

T. Lisa, Retailer/Supplier Shared Data Study, 2015. Available from: https://consumergoods.com/2015-retailersupplier-shared-data-study. Google Scholar

[22]

H. LiuW. JiangG. Feng and K. S. Chin, Information leakage and supply chain contracts, Omega, 90 (2020), 101994.  doi: 10.1016/j.omega.2018.11.003.  Google Scholar

[23]

M. Freedman, How Businesses Are Collecting Data, 2020. Available from: https://www.businessnewsdaily.com/10625-businesses-collecting-data.html. Google Scholar

[24]

S. K. MukhopadhyayD. Q. Yao and X. Yue, Information sharing of value-adding retailer in a mixed channel hi-tech supply chain, J. Business research, 61 (2008), 950-958.  doi: 10.1016/j.jbusres.2006.10.027.  Google Scholar

[25]

W. ShangA. Y. Ha and S. Tong, Information sharing in a supply chain with a common retailer. Management Science, Management Science, 62 (2016), 245-263.  doi: 10.1287/mnsc.2014.2127.  Google Scholar

[26]

4 Big Benefits of Retailers Sharing POS Data with Supply Chain Partners, Spring Global News, Spring Global, 2019, Available from: https://www.springglobal.com/blog/4-big-benefits-of-retailers-sharing-pos-data-with-supply-chain-partners. Google Scholar

[27]

X. SunW. TangJ. ChenS. Li and J. Zhang, Manufacturer encroachment with production cost reduction under asymmetric information, Transportation Research Part E: Logistics and Transportation Review, 128 (2019), 191-211.  doi: 10.1016/j.tre.2019.05.018.  Google Scholar

[28]

K. H. TanW. P. Wong and L. Chung, Information and knowledge leakage in supply chain, Information Systems Frontiers, 18 (2016), 621-638.  doi: 10.1007/s10796-015-9553-6.  Google Scholar

[29]

J. Wang, Z. Zhen and Q. Yan, Information sharing and leakage in the two-echelon supply chain, RAIRO-Oper. Res., 55 (2021), s307–s325. doi: 10.1051/ro/2019066.  Google Scholar

[30]

A. Weinbaum, 9 Ways to Encourage Distributors to Submit Channel POS Data, 2017. Available from: https://computermarketresearch.com/inspire-channel-pos-data-submission/. Google Scholar

[31]

Z. Yu, H. Yan and T. E. Cheng, Benefits of information sharing with supply chain partnerships, Industrial Management & Data Systems, 101 (2001). doi: 10.1108/02635570110386625.  Google Scholar

[32]

D. Y. ZhangX. CaoL. Wang and Y. Zeng, Mitigating the risk of information leakage in a two-level supply chain through optimal supplier selection, J. Intelligent Manufacturing, 23 (2019), 1351-1364.  doi: 10.1007/s10845-011-0527-3.  Google Scholar

[33]

D. Y. ZhangY. ZengL. WangH. Li and Y. Geng, Modeling and evaluating information leakage caused by inferences in supply chains, Computers in Industry, 62 (2011), 351-363.  doi: 10.1016/j.compind.2010.10.002.  Google Scholar

[34]

H. Zhang, Vertical information exchange in a supply chain with duopoly retailers, Production and Operations Management, 11 (2002), 531-546.  doi: 10.1111/j.1937-5956.2002.tb00476.x.  Google Scholar

show all references

References:
[1]

K. S. Anand and M. Goyal, Strategic information management under leakage in a supply chain, Management Science, 55 (2009), 438-452.  doi: 10.1287/mnsc.1080.0930.  Google Scholar

[2]

G. P. Cachon and M. Fisher, Supply chain inventory management and the value of shared information, Management Science, 46 (2000), 1032-1048.  doi: 10.1287/mnsc.46.8.1032.12029.  Google Scholar

[3]

K. CaiS. He and Z. He, Information sharing under different warranty policies with cost sharing in supply chains, Int. Trans. Oper. Res., 27 (2020), 1550-1572.  doi: 10.1111/itor.12597.  Google Scholar

[4]

E. Cao and G. Chen, Information sharing motivated by production cost reduction in a supply chain with downstream competition, Naval Research Logistics, 68 (2021), 898-907.  doi: 10.1002/nav.21977.  Google Scholar

[5]

Y. Chen and Ö. Özer, Supply chain contracts that prevent information leakage, Management Science, 65 (2019), 5619-5650.  doi: 10.1287/mnsc.2018.3200.  Google Scholar

[6]

D. Fang and Q. Ren, Optimal decision in a dual-channel supply chain under potential information leakage, Symmetry, 11 (2019), 308.  doi: 10.3390/sym11030308.  Google Scholar

[7]

Z. GuanX. ZhangM. Zhou and Y. Dan, Demand information sharing in competing supply chains with manufacturer-provided service, Int. J. Production Economics, 220 (2020), 107450.  doi: 10.1016/j.ijpe.2019.07.023.  Google Scholar

[8]

A. Y. HaQ. Tian and S. Tong, Information sharing in competing supply chains with production cost reduction, Manufacturing & Service Operations Management, 19 (2017), 246-262.  doi: 10.1287/msom.2016.0607.  Google Scholar

[9]

A. Y. HaS. Tong and H. Zhang, Sharing demand information in competing supply chains with production diseconomies, Management Science, 57 (2011), 566-581.  doi: 10.1287/mnsc.1100.1295.  Google Scholar

[10]

J. HuQ. Hu and Y. Xia, Who should invest in cost reduction in supply chains?, Int. J. Production Economics, 207 (2019), 1-18.  doi: 10.1016/j.ijpe.2018.10.002.  Google Scholar

[11]

L. Jiang and Z. Hao, Incentive-driven information dissemination in two-tier supply chains, Manufacturing & Service Operations Management, 18 (2016), 393-413.  doi: 10.1287/msom.2016.0575.  Google Scholar

[12]

S. H. Kim and S. Netessine, Collaborative cost reduction and component procurement under information asymmetry, Management Science, 59 (2013), 189-206.  doi: 10.1287/mnsc.1120.1573.  Google Scholar

[13]

G. KongS. Rajagopalan and H. Zhang, Revenue sharing and information leakage in a supply chain, Management Science, 59 (2013), 556-572.  doi: 10.1287/mnsc.1120.1627.  Google Scholar

[14]

H. L. LeeK. C. So and C. S. Tang, The value of information sharing in a two-level supply chain, Management Science, 46 (2016), 626-643.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

H. L. Lee and S. Whang, Information sharing in a supply chain, International Journal of Manufacturing Technology and Management, 1 (2000), 79-93.  doi: 10.1504/IJMTM.2000.001329.  Google Scholar

[16]

H. Lei, J. Wang, H. Yang and H. Wan, The impact of ex-post information sharing on a two-echelon supply chain with horizontal competition and capacity constraint, Annals of Operations Research, (2020), 1–27. Google Scholar

[17]

L. Li, Cournot oligopoly with information sharing, The Rand Journal of Economics, (1985), 521–536. Google Scholar

[18]

L. Li, Information sharing in a supply chain with horizontal competition, Management Science, 48 (2002), 1196-1212.   Google Scholar

[19]

X. LiJ. Chen and X. Ai, Contract design in a cross-sales supply chain with demand information asymmetry, European J. Oper. Res., 275 (2019), 939-956.  doi: 10.1016/j.ejor.2018.12.023.  Google Scholar

[20]

L. Li and H. Zhang, Confidentiality and information sharing in supply chain coordination, Management Science, 54 (2008), 1467-1481.  doi: 10.1287/mnsc.1070.0851.  Google Scholar

[21]

T. Lisa, Retailer/Supplier Shared Data Study, 2015. Available from: https://consumergoods.com/2015-retailersupplier-shared-data-study. Google Scholar

[22]

H. LiuW. JiangG. Feng and K. S. Chin, Information leakage and supply chain contracts, Omega, 90 (2020), 101994.  doi: 10.1016/j.omega.2018.11.003.  Google Scholar

[23]

M. Freedman, How Businesses Are Collecting Data, 2020. Available from: https://www.businessnewsdaily.com/10625-businesses-collecting-data.html. Google Scholar

[24]

S. K. MukhopadhyayD. Q. Yao and X. Yue, Information sharing of value-adding retailer in a mixed channel hi-tech supply chain, J. Business research, 61 (2008), 950-958.  doi: 10.1016/j.jbusres.2006.10.027.  Google Scholar

[25]

W. ShangA. Y. Ha and S. Tong, Information sharing in a supply chain with a common retailer. Management Science, Management Science, 62 (2016), 245-263.  doi: 10.1287/mnsc.2014.2127.  Google Scholar

[26]

4 Big Benefits of Retailers Sharing POS Data with Supply Chain Partners, Spring Global News, Spring Global, 2019, Available from: https://www.springglobal.com/blog/4-big-benefits-of-retailers-sharing-pos-data-with-supply-chain-partners. Google Scholar

[27]

X. SunW. TangJ. ChenS. Li and J. Zhang, Manufacturer encroachment with production cost reduction under asymmetric information, Transportation Research Part E: Logistics and Transportation Review, 128 (2019), 191-211.  doi: 10.1016/j.tre.2019.05.018.  Google Scholar

[28]

K. H. TanW. P. Wong and L. Chung, Information and knowledge leakage in supply chain, Information Systems Frontiers, 18 (2016), 621-638.  doi: 10.1007/s10796-015-9553-6.  Google Scholar

[29]

J. Wang, Z. Zhen and Q. Yan, Information sharing and leakage in the two-echelon supply chain, RAIRO-Oper. Res., 55 (2021), s307–s325. doi: 10.1051/ro/2019066.  Google Scholar

[30]

A. Weinbaum, 9 Ways to Encourage Distributors to Submit Channel POS Data, 2017. Available from: https://computermarketresearch.com/inspire-channel-pos-data-submission/. Google Scholar

[31]

Z. Yu, H. Yan and T. E. Cheng, Benefits of information sharing with supply chain partnerships, Industrial Management & Data Systems, 101 (2001). doi: 10.1108/02635570110386625.  Google Scholar

[32]

D. Y. ZhangX. CaoL. Wang and Y. Zeng, Mitigating the risk of information leakage in a two-level supply chain through optimal supplier selection, J. Intelligent Manufacturing, 23 (2019), 1351-1364.  doi: 10.1007/s10845-011-0527-3.  Google Scholar

[33]

D. Y. ZhangY. ZengL. WangH. Li and Y. Geng, Modeling and evaluating information leakage caused by inferences in supply chains, Computers in Industry, 62 (2011), 351-363.  doi: 10.1016/j.compind.2010.10.002.  Google Scholar

[34]

H. Zhang, Vertical information exchange in a supply chain with duopoly retailers, Production and Operations Management, 11 (2002), 531-546.  doi: 10.1111/j.1937-5956.2002.tb00476.x.  Google Scholar

Figure 1.  Supply chain members' expected profit in system SC without information leakage
Figure 2.  The retailer's information sharing strategies in system SC without information leakage
Figure 3.  Supply chain members' expected profits in system RC without information leakage
Figure 4.  Retailers' information sharing strategies in system RC without information leakage
Figure 5.  Supply chain members' expected profits in system RC with information leakage
Figure 6.  Retailers' information sharing strategies in system RC without information leakage
Table 1.  Summary table of literature review
Papers Influence factors Supply chain structures
Information leakage Cost reduction System SC System RC
Fang and Ren[6] $ \checkmark $ $ \times $ $ \times $ $ \times $
Wang et al.[29] $ \checkmark $ $ \times $ $ \times $ $ \checkmark $
Chen and Özer[5] $ \checkmark $ $ \times $ $ \times $ $ \checkmark $
Ha et al.[8] $ \times $ $ \checkmark $ $ \times $ $ \times $
Sun et al.[27] $ \times $ $ \checkmark $ $ \times $ $ \times $
Cao and Chen[4] $ \checkmark $ $ \checkmark $ $ \times $ $ \checkmark $
Our paper $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $
Papers Influence factors Supply chain structures
Information leakage Cost reduction System SC System RC
Fang and Ren[6] $ \checkmark $ $ \times $ $ \times $ $ \times $
Wang et al.[29] $ \checkmark $ $ \times $ $ \times $ $ \checkmark $
Chen and Özer[5] $ \checkmark $ $ \times $ $ \times $ $ \checkmark $
Ha et al.[8] $ \times $ $ \checkmark $ $ \times $ $ \times $
Sun et al.[27] $ \times $ $ \checkmark $ $ \times $ $ \times $
Cao and Chen[4] $ \checkmark $ $ \checkmark $ $ \times $ $ \checkmark $
Our paper $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $
Table 2.  Parameters and notations
Parameters and notations Description
$ p_{i} $ Selling price of product $ i $
$ q_{i} $ Order quantity of product $ i $
$ \alpha $ Potential market size
$ \theta $ Demand uncertainty with the mean of $ 0 $ and variance of $ \theta^2 $
$ \gamma $ Competition intensity and a larger $ \gamma $ implies more intense competition
$ c_i $ Production cost of product $ i $
$ x_i $ Production cost reduction level of product $ i $
$ k_i $ Cost reduction efficiency of product $ i $ and a lower $ k_i $ indicates a higher efficiency
$ Y_{(i)} $ Demand signal of retailer $ (i) $
$ s $ Accuracy of demand signal and a larger $ s $ indicates a less accurate information
$ n=(n_1,n_2) $ Information sharing decisions
$ \omega_i $ Wholesale price of product $ i $
$ \pi_{R_{(i)}}^{(n_1,n_2)} $ Profit of the retailer $ (i) $ under information sharing arrangement $ n=(n_1,n_2) $
$ \pi_{S_{(i)}}^{(n_1,n_2)} $ Profit of the supplier $ (i) $ under information sharing arrangement $ n=(n_1,n_2) $
Parameters and notations Description
$ p_{i} $ Selling price of product $ i $
$ q_{i} $ Order quantity of product $ i $
$ \alpha $ Potential market size
$ \theta $ Demand uncertainty with the mean of $ 0 $ and variance of $ \theta^2 $
$ \gamma $ Competition intensity and a larger $ \gamma $ implies more intense competition
$ c_i $ Production cost of product $ i $
$ x_i $ Production cost reduction level of product $ i $
$ k_i $ Cost reduction efficiency of product $ i $ and a lower $ k_i $ indicates a higher efficiency
$ Y_{(i)} $ Demand signal of retailer $ (i) $
$ s $ Accuracy of demand signal and a larger $ s $ indicates a less accurate information
$ n=(n_1,n_2) $ Information sharing decisions
$ \omega_i $ Wholesale price of product $ i $
$ \pi_{R_{(i)}}^{(n_1,n_2)} $ Profit of the retailer $ (i) $ under information sharing arrangement $ n=(n_1,n_2) $
$ \pi_{S_{(i)}}^{(n_1,n_2)} $ Profit of the supplier $ (i) $ under information sharing arrangement $ n=(n_1,n_2) $
Table 3.  Decisions and ex-ante profits in system SC without information leakage
$ n $ Decisions Ex-ante profits
$ (0,0) $ $ \omega_i^{(0,0)}=\omega^0 $ $ \pi_{R}^{(0,0)}=\pi_{R}^{0}+\frac{\sigma ^2}{2(1+s)(1+\gamma )} $
$ x_i^{(0,0)}=x^0 $
$ q_i^{(0,0)}=q^0+\frac{Y}{2(1+s)(1+\gamma )} $ $ \pi_{S_i}^{(0,0)}=\pi_{S}^{0} $
$ (1,1) $ $ \omega_i^{(1,1)}=\omega^0+\frac{(2k(1-\gamma^2)-1)Y}{(1+s)(2k(2-\gamma)(1+\gamma)-1)} $ $ \pi_{R}^{(1,1)}=\pi_{R}^{0}+\frac{2k^2(1+\gamma)\sigma ^2}{(1+s)(2k(2-\gamma)(1+\gamma)-1)^2} $
$ x_i^{(1,1)}=x^0+\frac{Y}{(1+s)(2k(2-\gamma)(1+\gamma)-1)} $
$ q_i^{(1,1)}=q^0+\frac{kY}{(1+s)(2k(2-\gamma)(1+\gamma)-1)} $ $ \pi_{S_i}^{(1,1)}=\pi_{S}^{0}+\frac{k(4k(1-\gamma^2)-1)\sigma ^2}{2(1+s)(2k(2-\gamma)(1+\gamma)-1)^2} $
$ (1,0) $ $ \omega_1^{(1,0)}=\omega^0+\frac{(1-\gamma)(2k(1-\gamma^2)-1)Y}{(1+s)(4k(1+\gamma^2)-1)} $ $ \pi_{R}^{(1,0)}=\pi_{R}^{0} $
$ x_1^{(1,0)}=x^0+\frac{(1-\gamma)Y}{(1+s)(4k(1+\gamma^2)-1)} $ $ +\frac{(4k^2(1-\gamma)^2(1+\gamma)(5+3\gamma)-8k(1-\gamma^2)+1)\sigma ^2}{4(1+s)(4k(1-\gamma^2)-1)^2} $
$ \omega_2^{(1,0)}=\omega^0 $ $ \pi_{S_1}^{(1,0)}=\pi_{S}^{0}+\frac{(k(1-\gamma)^2\sigma ^2}{2(1+s)(4k(1-\gamma^2)-1)^2} $
$ x_2^{(1,0)}=x^0 $
$ q_1^{(1,0)}=q^0+\frac{(1-\gamma)kY}{(1+s)(4k(1+\gamma^2)-1)} $ $ \pi_{S_2}^{(1,0)}=\pi_{S}^{0} $
$ q_2^{(1,0)}=q^0+\frac{2k(2+\gamma)(1-\gamma)Y}{2(1+s)(4k(1+\gamma^2)-1)} $
Notes. $\omega^0=\frac{(2k(1-\gamma^2)-1)\alpha+2k(1+\gamma)c}{(2k(2-\gamma)(1+\gamma)-1}, x^0=\frac{\alpha-c}{(2k(2-\gamma)(1+\gamma)-1)}, q^0=\frac{k(\alpha-c)}{(2k(2-\gamma)(1+\gamma)-1},$
$\pi_{R}^{0}=\frac{2k^2(1+\gamma)(\alpha-c)^2}{(2k(2-\gamma)(1+\gamma)-1)^2},\pi_{S}^{0}=\frac{k(4k(1-\gamma^2)-1)(\alpha-c)^2}{2(2k(2-\gamma)(1+\gamma)-1)^2}.$
$ n $ Decisions Ex-ante profits
$ (0,0) $ $ \omega_i^{(0,0)}=\omega^0 $ $ \pi_{R}^{(0,0)}=\pi_{R}^{0}+\frac{\sigma ^2}{2(1+s)(1+\gamma )} $
$ x_i^{(0,0)}=x^0 $
$ q_i^{(0,0)}=q^0+\frac{Y}{2(1+s)(1+\gamma )} $ $ \pi_{S_i}^{(0,0)}=\pi_{S}^{0} $
$ (1,1) $ $ \omega_i^{(1,1)}=\omega^0+\frac{(2k(1-\gamma^2)-1)Y}{(1+s)(2k(2-\gamma)(1+\gamma)-1)} $ $ \pi_{R}^{(1,1)}=\pi_{R}^{0}+\frac{2k^2(1+\gamma)\sigma ^2}{(1+s)(2k(2-\gamma)(1+\gamma)-1)^2} $
$ x_i^{(1,1)}=x^0+\frac{Y}{(1+s)(2k(2-\gamma)(1+\gamma)-1)} $
$ q_i^{(1,1)}=q^0+\frac{kY}{(1+s)(2k(2-\gamma)(1+\gamma)-1)} $ $ \pi_{S_i}^{(1,1)}=\pi_{S}^{0}+\frac{k(4k(1-\gamma^2)-1)\sigma ^2}{2(1+s)(2k(2-\gamma)(1+\gamma)-1)^2} $
$ (1,0) $ $ \omega_1^{(1,0)}=\omega^0+\frac{(1-\gamma)(2k(1-\gamma^2)-1)Y}{(1+s)(4k(1+\gamma^2)-1)} $ $ \pi_{R}^{(1,0)}=\pi_{R}^{0} $
$ x_1^{(1,0)}=x^0+\frac{(1-\gamma)Y}{(1+s)(4k(1+\gamma^2)-1)} $ $ +\frac{(4k^2(1-\gamma)^2(1+\gamma)(5+3\gamma)-8k(1-\gamma^2)+1)\sigma ^2}{4(1+s)(4k(1-\gamma^2)-1)^2} $
$ \omega_2^{(1,0)}=\omega^0 $ $ \pi_{S_1}^{(1,0)}=\pi_{S}^{0}+\frac{(k(1-\gamma)^2\sigma ^2}{2(1+s)(4k(1-\gamma^2)-1)^2} $
$ x_2^{(1,0)}=x^0 $
$ q_1^{(1,0)}=q^0+\frac{(1-\gamma)kY}{(1+s)(4k(1+\gamma^2)-1)} $ $ \pi_{S_2}^{(1,0)}=\pi_{S}^{0} $
$ q_2^{(1,0)}=q^0+\frac{2k(2+\gamma)(1-\gamma)Y}{2(1+s)(4k(1+\gamma^2)-1)} $
Notes. $\omega^0=\frac{(2k(1-\gamma^2)-1)\alpha+2k(1+\gamma)c}{(2k(2-\gamma)(1+\gamma)-1}, x^0=\frac{\alpha-c}{(2k(2-\gamma)(1+\gamma)-1)}, q^0=\frac{k(\alpha-c)}{(2k(2-\gamma)(1+\gamma)-1},$
$\pi_{R}^{0}=\frac{2k^2(1+\gamma)(\alpha-c)^2}{(2k(2-\gamma)(1+\gamma)-1)^2},\pi_{S}^{0}=\frac{k(4k(1-\gamma^2)-1)(\alpha-c)^2}{2(2k(2-\gamma)(1+\gamma)-1)^2}.$
Table 4.  Decisions and ex-ante profits in system SC without information leakage
$ n $ Decisions Ex-ante profits
$ (0,0) $ $ \omega_i^{(0,0)}=\omega^0 $ $ \pi_{R_i}^{(0,0)}=\pi_{R_i}^{0}+\frac{(1+s)\sigma ^2}{(2+2s+\gamma)^2} $
$ x_i^{(0,0)}=x^0 $
$ q_i^{(0,0)}=q^0+\frac{Y_i}{2+2s+\gamma} $ $ \pi_{S}^{(0,0)}=\pi_{S}^{0} $
$ (1,1) $ $ \omega_i^{(1,1)}=\omega^0+\alpha_i^{(1,1)} $ $ \pi_{R_i}^{(1,1)}=\pi_{R}^{0}+\zeta_i^{(1,1)} $
$ x_i^{(1,1)}=x^0+\beta_i^{(1,1)} $
$ q_i^{(1,1)}=q^0+\delta_i^{(1,1)} $ $ \pi_{S}^{(1,1)}=\pi_{S}^{0}+\eta_i^{(1,1)} $
$ (1,0) $ $ \omega_1^{(1,0)}=\omega^0+\alpha_1^{(1,0)} $ $ \pi_{R_1}^{(1,0)}=\pi_{R}^{0}+\zeta_1^{(1,0)} $
$ x_1^{(1,0)}=x^0+\beta_1^{(1,0)} $
$ \omega_2^{(1,0)}=\omega^0+\alpha_2^{(1,0)} $ $ \pi_{R_2}^{(1,0)}=\pi_{R}^{0}+\zeta_2^{(1,0)} $
$ x_2^{(1,0)}=x^0+\beta_2^{(1,0)} $
$ q_1^{(1,0)}=q^0+\delta_1^{(1,0)} $ $ \pi_{S}^{(1,0)}=\pi_{S}^{0}+\eta^{(1,0)} $
$ q_2^{(1,0)}=q^0+\delta_2^{(1,0)} $
Notes. $\omega^0=\frac{(k(2+\gamma)-1)\alpha+k(2+\gamma)c}{2k(2+\gamma)-1},x^0=\frac{\alpha-c}{2k(2+\gamma)-1},q^0=\frac{k(\alpha-c)}{2k(2+\gamma)-1},\pi_{R}^{0}=\frac{k^2(\alpha-c)^2}{(2k(2+\gamma)-1)^2},$,
$ \pi_{S}^{0}=\frac{k(\alpha-c)^2}{(2k(2+\gamma)-1)^2} \qquad \left\{\begin{array}{l} \alpha _1^{(1,0)}=\frac{(2k^2(2+2s+\gamma)(4-\gamma ^2)+k((1+s)\gamma ^2-4(3+3s+\gamma ))+2+2s+\gamma )Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \\ \alpha _2^{(1,0)}=\frac{(2k^2(2+\gamma+s\gamma)(4-\gamma ^2)-k(12+(4+4s-\gamma )\gamma )+2+\gamma+s\gamma)Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \alpha _i^{(1,1)}=\frac{(4k-1)(k(4-\gamma^2)-2)Y_i+(2k^2(4-\gamma^2)-4k+1)\gamma Y_j}{(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$ $ \left\{\begin{array}{l} \beta _1^{(1,0)}=\frac{(2k(1+s)(4-\gamma ^2)-(2+2s+\gamma) )Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \beta _2^{(1,0)}=\frac{(2k(4-\gamma ^2)-(2+\gamma+s\gamma))Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \beta _i^{(1,1)}=\frac{2(k(4-\gamma^2)-1)Y_i-\gamma Y_j}{(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$
$\left\{\begin{array}{l} \delta _1^{(1,0)}=\frac{k(2k(1+s)(4-\gamma ^2)-(2+2s+\gamma) )Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \\ \delta _2^{(1,0)}=\frac{(k(6-\gamma-s\gamma)-2k^2(4-\gamma^2)-1)Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}+\frac{Y_2}{2+2s+\gamma},\\ \delta _i^{(1,1)}=\frac{2k(k(4-\gamma^2)-1)Y_i-k\gamma Y_j}{(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$
$ \left\{\begin{array}{l} \eta^{(1,0)}=\frac{(4k(2+\gamma+s(2+s+\gamma))(4-\gamma^2)-2(1+s)(2+\gamma)^2-s^2(4+\gamma^2))k\sigma^2}{2(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \\ \eta^{(0,1)}=\frac{(4k(2+\gamma+s(2+s+\gamma))(4-\gamma^2)-2(1+s)(2+\gamma)^2-s^2(4+\gamma^2))k\sigma^2}{2(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \eta^{(1,1)}=\frac{(2k(2+2s+\gamma)(4-\gamma^2)-s(4+\gamma^2)-(2+\gamma)^2)k\sigma^2}{(2+2s+\gamma)^2(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$
$ \left\{\begin{array}{l} \zeta_1^{(1,0)}=\frac{(2k(1+s)(4-\gamma ^2)-(2+2s+\gamma) )^2k^2\sigma^2}{(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}, \\ \zeta_2^{(1,0)}=\frac{(2k(2+\gamma )-1)(2k(2-\gamma )-1)(2k^2(1+2s(2+s))(4-\gamma^2)-k(2+\gamma+s(16+8s+\gamma))+s(2+s))\sigma^2}{(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}+\\ \frac{(2k^2(1+2s(2-\gamma))(4-\gamma^2)-k(2+\gamma+s(17-7\gamma))+s(2-\gamma)(k(6-\gamma-s\gamma)-2k^2(4-\gamma^2)-1)\sigma^2}{(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2},\\ \zeta_i^{(1,1)}=\frac{(4k^3(1+s)(4-\gamma^2)^2+4k^2(4-\gamma^2)(s\gamma^2-(1+2s)\gamma-2(1+s)))k\sigma^2}{(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}\\+\frac{(k((1-7s)\gamma^2+4(1+4s)\gamma+4(1+s))-s(2-\gamma)\gamma)k\sigma^2}{(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}. \end{array}\right.$
$ n $ Decisions Ex-ante profits
$ (0,0) $ $ \omega_i^{(0,0)}=\omega^0 $ $ \pi_{R_i}^{(0,0)}=\pi_{R_i}^{0}+\frac{(1+s)\sigma ^2}{(2+2s+\gamma)^2} $
$ x_i^{(0,0)}=x^0 $
$ q_i^{(0,0)}=q^0+\frac{Y_i}{2+2s+\gamma} $ $ \pi_{S}^{(0,0)}=\pi_{S}^{0} $
$ (1,1) $ $ \omega_i^{(1,1)}=\omega^0+\alpha_i^{(1,1)} $ $ \pi_{R_i}^{(1,1)}=\pi_{R}^{0}+\zeta_i^{(1,1)} $
$ x_i^{(1,1)}=x^0+\beta_i^{(1,1)} $
$ q_i^{(1,1)}=q^0+\delta_i^{(1,1)} $ $ \pi_{S}^{(1,1)}=\pi_{S}^{0}+\eta_i^{(1,1)} $
$ (1,0) $ $ \omega_1^{(1,0)}=\omega^0+\alpha_1^{(1,0)} $ $ \pi_{R_1}^{(1,0)}=\pi_{R}^{0}+\zeta_1^{(1,0)} $
$ x_1^{(1,0)}=x^0+\beta_1^{(1,0)} $
$ \omega_2^{(1,0)}=\omega^0+\alpha_2^{(1,0)} $ $ \pi_{R_2}^{(1,0)}=\pi_{R}^{0}+\zeta_2^{(1,0)} $
$ x_2^{(1,0)}=x^0+\beta_2^{(1,0)} $
$ q_1^{(1,0)}=q^0+\delta_1^{(1,0)} $ $ \pi_{S}^{(1,0)}=\pi_{S}^{0}+\eta^{(1,0)} $
$ q_2^{(1,0)}=q^0+\delta_2^{(1,0)} $
Notes. $\omega^0=\frac{(k(2+\gamma)-1)\alpha+k(2+\gamma)c}{2k(2+\gamma)-1},x^0=\frac{\alpha-c}{2k(2+\gamma)-1},q^0=\frac{k(\alpha-c)}{2k(2+\gamma)-1},\pi_{R}^{0}=\frac{k^2(\alpha-c)^2}{(2k(2+\gamma)-1)^2},$,
$ \pi_{S}^{0}=\frac{k(\alpha-c)^2}{(2k(2+\gamma)-1)^2} \qquad \left\{\begin{array}{l} \alpha _1^{(1,0)}=\frac{(2k^2(2+2s+\gamma)(4-\gamma ^2)+k((1+s)\gamma ^2-4(3+3s+\gamma ))+2+2s+\gamma )Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \\ \alpha _2^{(1,0)}=\frac{(2k^2(2+\gamma+s\gamma)(4-\gamma ^2)-k(12+(4+4s-\gamma )\gamma )+2+\gamma+s\gamma)Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \alpha _i^{(1,1)}=\frac{(4k-1)(k(4-\gamma^2)-2)Y_i+(2k^2(4-\gamma^2)-4k+1)\gamma Y_j}{(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$ $ \left\{\begin{array}{l} \beta _1^{(1,0)}=\frac{(2k(1+s)(4-\gamma ^2)-(2+2s+\gamma) )Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \beta _2^{(1,0)}=\frac{(2k(4-\gamma ^2)-(2+\gamma+s\gamma))Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \beta _i^{(1,1)}=\frac{2(k(4-\gamma^2)-1)Y_i-\gamma Y_j}{(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$
$\left\{\begin{array}{l} \delta _1^{(1,0)}=\frac{k(2k(1+s)(4-\gamma ^2)-(2+2s+\gamma) )Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \\ \delta _2^{(1,0)}=\frac{(k(6-\gamma-s\gamma)-2k^2(4-\gamma^2)-1)Y_1}{(1+s)(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}+\frac{Y_2}{2+2s+\gamma},\\ \delta _i^{(1,1)}=\frac{2k(k(4-\gamma^2)-1)Y_i-k\gamma Y_j}{(2+2s+\gamma)(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$
$ \left\{\begin{array}{l} \eta^{(1,0)}=\frac{(4k(2+\gamma+s(2+s+\gamma))(4-\gamma^2)-2(1+s)(2+\gamma)^2-s^2(4+\gamma^2))k\sigma^2}{2(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \\ \eta^{(0,1)}=\frac{(4k(2+\gamma+s(2+s+\gamma))(4-\gamma^2)-2(1+s)(2+\gamma)^2-s^2(4+\gamma^2))k\sigma^2}{2(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)(2k(2-\gamma )-1)},\\ \eta^{(1,1)}=\frac{(2k(2+2s+\gamma)(4-\gamma^2)-s(4+\gamma^2)-(2+\gamma)^2)k\sigma^2}{(2+2s+\gamma)^2(2k(2+\gamma )-1)(2k(2-\gamma )-1)}, \end{array}\right.$
$ \left\{\begin{array}{l} \zeta_1^{(1,0)}=\frac{(2k(1+s)(4-\gamma ^2)-(2+2s+\gamma) )^2k^2\sigma^2}{(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}, \\ \zeta_2^{(1,0)}=\frac{(2k(2+\gamma )-1)(2k(2-\gamma )-1)(2k^2(1+2s(2+s))(4-\gamma^2)-k(2+\gamma+s(16+8s+\gamma))+s(2+s))\sigma^2}{(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}+\\ \frac{(2k^2(1+2s(2-\gamma))(4-\gamma^2)-k(2+\gamma+s(17-7\gamma))+s(2-\gamma)(k(6-\gamma-s\gamma)-2k^2(4-\gamma^2)-1)\sigma^2}{(1+s)(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2},\\ \zeta_i^{(1,1)}=\frac{(4k^3(1+s)(4-\gamma^2)^2+4k^2(4-\gamma^2)(s\gamma^2-(1+2s)\gamma-2(1+s)))k\sigma^2}{(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}\\+\frac{(k((1-7s)\gamma^2+4(1+4s)\gamma+4(1+s))-s(2-\gamma)\gamma)k\sigma^2}{(2+2s+\gamma)^2(2k(2+\gamma )-1)^2(2k(2-\gamma )-1)^2}. \end{array}\right.$
Table 5.  Decisions and ex-ante profits in system SC without information leakage
$ n $ Decisions Ex-ante profits
$ (0,0) $ $ \omega^{(0,0)}=\omega^0 $ $ \pi_{R_i}^{(0,0)}=\pi_{R}^{0}+\frac{(1+s)\sigma ^2}{(2+2s+\gamma)^2} $
$ x^{(0,0)}=x^0 $
$ q_i^{(0,0)}=q^0+\frac{Y_i}{2+2s+\gamma} $ $ \pi_{S}^{(0,0)}=\pi_{S}^{0} $
$ (1,1) $ $ \omega^{(1,1)}=\omega^0+\frac{(2k+k\gamma-1)(Y_1+Y_2)}{(2+s)(2k(2+\gamma)-1)} $ $ \pi_{R_i}^{(1,1)}=\pi_{R}^{0}+\frac{2k^2\sigma^2}{(2+s)(2k(2+\gamma)-1)^2} $
$ x^{(1,1)}=x^0+\frac{Y_1+Y_2}{(2+s)(2k(2+\gamma)-1)} $
$ q_i^{(1,1)}=q^0+\frac{k(Y_1+Y_2)}{(2+s)(2k(2+\gamma)-1)} $ $ \pi_{S}^{(1,1)}=\pi_{S}^{0}+\frac{2k\sigma^2}{(2+s)(2k(2+\gamma)-1)} $
$ (1,0) $ $ \omega^{(1,0)}=\omega^0+\frac{(2k+k\gamma-1)Y_1}{(1+s)(2k(2+\gamma)-1)} $ $ \pi_{R_1}^{(1,0)}=\pi_{R}^{0}+\frac{k^2\sigma^2}{(1+s)(2k(2+\gamma)-1)^2} $
$ x^{(1,0)}=x^0+\frac{Y_1}{(1+s)(2k(2+\gamma)-1)} $ $ \pi_{R_2}^{(1,0)}=\pi_{R}^{0} $
$ q_1^{(1,0)}=q^0+\frac{kY_1}{(1+s)(2k(2+\gamma)-1)} $ $ +\frac{(4k^2(2+5s)+4ks\gamma(4k+k\gamma-1)-(8k-1)s)\sigma^2}{4(1+s)(2+s)(2k(2+\gamma)-1)^2} $
$ q_2^{(1,0)}=q^0+\frac{(1+2ks-2k\gamma)Y_1}{2(1+s)(2+s)(2k(2+\gamma)-1)}+\frac{Y_2}{2(2+s)} $ $ \pi_{S}^{(1,0)}=\pi_{S}^{0}+\frac{k\sigma^2}{(1+s)(2k(2+\gamma)-1)} $
Notes. $\omega^0=\frac{(k(2+\gamma)-1)\alpha+k(2+\gamma)c}{2k(2+\gamma)-1}, \quad x^0=\frac{\alpha-c}{2k(2+\gamma)-1}, \quad q^0=\frac{k(\alpha-c)}{2k(2+\gamma)-1}, $
$\pi_{R}^{0}=\frac{k^2(\alpha-c)^2}{(2k(2+\gamma)-1)^2}, \qquad \pi_{S}^{0}=\frac{k(\alpha-c)^2}{(2k(2+\gamma)-1)^2}$
$ n $ Decisions Ex-ante profits
$ (0,0) $ $ \omega^{(0,0)}=\omega^0 $ $ \pi_{R_i}^{(0,0)}=\pi_{R}^{0}+\frac{(1+s)\sigma ^2}{(2+2s+\gamma)^2} $
$ x^{(0,0)}=x^0 $
$ q_i^{(0,0)}=q^0+\frac{Y_i}{2+2s+\gamma} $ $ \pi_{S}^{(0,0)}=\pi_{S}^{0} $
$ (1,1) $ $ \omega^{(1,1)}=\omega^0+\frac{(2k+k\gamma-1)(Y_1+Y_2)}{(2+s)(2k(2+\gamma)-1)} $ $ \pi_{R_i}^{(1,1)}=\pi_{R}^{0}+\frac{2k^2\sigma^2}{(2+s)(2k(2+\gamma)-1)^2} $
$ x^{(1,1)}=x^0+\frac{Y_1+Y_2}{(2+s)(2k(2+\gamma)-1)} $
$ q_i^{(1,1)}=q^0+\frac{k(Y_1+Y_2)}{(2+s)(2k(2+\gamma)-1)} $ $ \pi_{S}^{(1,1)}=\pi_{S}^{0}+\frac{2k\sigma^2}{(2+s)(2k(2+\gamma)-1)} $
$ (1,0) $ $ \omega^{(1,0)}=\omega^0+\frac{(2k+k\gamma-1)Y_1}{(1+s)(2k(2+\gamma)-1)} $ $ \pi_{R_1}^{(1,0)}=\pi_{R}^{0}+\frac{k^2\sigma^2}{(1+s)(2k(2+\gamma)-1)^2} $
$ x^{(1,0)}=x^0+\frac{Y_1}{(1+s)(2k(2+\gamma)-1)} $ $ \pi_{R_2}^{(1,0)}=\pi_{R}^{0} $
$ q_1^{(1,0)}=q^0+\frac{kY_1}{(1+s)(2k(2+\gamma)-1)} $ $ +\frac{(4k^2(2+5s)+4ks\gamma(4k+k\gamma-1)-(8k-1)s)\sigma^2}{4(1+s)(2+s)(2k(2+\gamma)-1)^2} $
$ q_2^{(1,0)}=q^0+\frac{(1+2ks-2k\gamma)Y_1}{2(1+s)(2+s)(2k(2+\gamma)-1)}+\frac{Y_2}{2(2+s)} $ $ \pi_{S}^{(1,0)}=\pi_{S}^{0}+\frac{k\sigma^2}{(1+s)(2k(2+\gamma)-1)} $
Notes. $\omega^0=\frac{(k(2+\gamma)-1)\alpha+k(2+\gamma)c}{2k(2+\gamma)-1}, \quad x^0=\frac{\alpha-c}{2k(2+\gamma)-1}, \quad q^0=\frac{k(\alpha-c)}{2k(2+\gamma)-1}, $
$\pi_{R}^{0}=\frac{k^2(\alpha-c)^2}{(2k(2+\gamma)-1)^2}, \qquad \pi_{S}^{0}=\frac{k(\alpha-c)^2}{(2k(2+\gamma)-1)^2}$
[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Tsan-Ming Choi. Quick response in fashion supply chains with dual information updating. Journal of Industrial & Management Optimization, 2006, 2 (3) : 255-268. doi: 10.3934/jimo.2006.2.255

[3]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[4]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1999-2027. doi: 10.3934/jimo.2019040

[5]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[6]

Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005

[7]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[8]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[9]

Xiaoshuang Xing, Gaofei Sun, Yong Jin, Wenyi Tang, Xiuzhen Cheng. Relay selection based on social relationship prediction and information leakage reduction for mobile social networks. Mathematical Foundations of Computing, 2018, 1 (4) : 369-382. doi: 10.3934/mfc.2018018

[10]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[11]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[12]

Guoqiang Shi, Yong Wang, Dejian Xia, Yanfei Zhao. Information sharing when competing manufacturers adopt asymmetric channel in an e-tailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021207

[13]

Juliang Zhang, Jian Chen. Externality of contracts on supply chains with two suppliers and a common retailer. Journal of Industrial & Management Optimization, 2010, 6 (4) : 795-810. doi: 10.3934/jimo.2010.6.795

[14]

Vladimir G. Romanov, Masahiro Yamamoto. Recovering two coefficients in an elliptic equation via phaseless information. Inverse Problems & Imaging, 2019, 13 (1) : 81-91. doi: 10.3934/ipi.2019005

[15]

Rui Wang, Denghua Zhong, Yuankun Zhang, Jia Yu, Mingchao Li. A multidimensional information model for managing construction information. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1285-1300. doi: 10.3934/jimo.2015.11.1285

[16]

Nickolas J. Michelacakis. Strategic delegation effects on Cournot and Stackelberg competition. Journal of Dynamics & Games, 2018, 5 (3) : 231-242. doi: 10.3934/jdg.2018015

[17]

Vikram Krishnamurthy, William Hoiles. Information diffusion in social sensing. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 365-411. doi: 10.3934/naco.2016017

[18]

Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016

[19]

Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics & Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009

[20]

Ioannis D. Baltas, Athanasios N. Yannacopoulos. Uncertainty and inside information. Journal of Dynamics & Games, 2016, 3 (1) : 1-24. doi: 10.3934/jdg.2016001

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (99)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]