This paper investigates the pricing of European-style lookback options when the price dynamics of the underlying risky asset are assumed to follow a Markov-modulated Geometric Brownian motion; that is, the appreciation rate and the volatility of the underlying risky asset depend on states of the economy described by a continuous-time Markov chain process. We derive an exact, explicit and closed-form solution for European-style lookback options in a two-state regime switching model.
Citation: |
[1] |
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.
doi: 10.1086/260062.![]() ![]() ![]() |
[2] |
P. P. Boyle and T. Draviam, Pricing exotic options under regime switching, Insurance Math. Econom., 40 (2007), 267-282.
doi: 10.1016/j.insmatheco.2006.05.001.![]() ![]() ![]() |
[3] |
J. Buffington and R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Finance, 5 (2002), 497-514.
doi: 10.1142/S0219024902001523.![]() ![]() ![]() |
[4] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics (New York), 29. Springer-Verlag, New York, 1995.
doi: 10.1007/978-0-387-84854-9.![]() ![]() ![]() |
[5] |
M. B. Goldman, H. B. Sosin and M. A. Gatto, Path-dependent options buy at the low, sell at the high, J. Finance, 34 (1979), 1111-1127.
![]() |
[6] |
X. Guo, Information and option pricings, Quant. Finance, 1 (2001), 38-44.
doi: 10.1080/713665550.![]() ![]() ![]() |
[7] |
X. J. He and S. P. Zhu, On full calibration of hybrid local volatility and regime-switching models, J. Futures Markets, 38 (2018), 586-606.
doi: 10.1002/fut.21901.![]() ![]() |
[8] |
K. S. Leung, An analytic pricing formula for lookback options under stochastic volatility, Appl. Math. Lett., 26 (2013), 145-149.
doi: 10.1016/j.aml.2012.07.008.![]() ![]() ![]() |
[9] |
S. J. Liao, Numerically solving non-linear problems by the homotopy analysis method,, Comput. Mech., 20 (1997), 530-540.
doi: 10.1007/s004660050273.![]() ![]() |
[10] |
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
doi: 10.1016/C2013-0-11263-9.![]() ![]() ![]() |
[11] |
H. Y. Wong and Y. K. Kwok, Sub-replication and replenishing premium: Efficient pricing of multi-state lookbacks, Review of Derivatives Research, 6 (2003), 83-106.
![]() |
[12] |
D. D. Yao, Q. Zhang and X. Y. Zhou, A regime switching model for European options, Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, 194 (2006), 281-300.
doi: 10.1007/0-387-33815-2_14.![]() ![]() ![]() |
[13] |
S. P. Zhu, An exact and explicit solution for the valuation of American put options, Quant. Finance, 6 (2006), 229-242.
doi: 10.1080/14697680600699811.![]() ![]() ![]() |
[14] |
S. P. Zhu, A. Badran and X. Lu, A new exact solution for pricing European options in a two-state regime-switching economy, Comput. Math. Appl., 64 (2012), 2744-2755.
doi: 10.1016/j.camwa.2012.08.005.![]() ![]() ![]() |