In this paper, we establish sharp upper and lower bounds on the minimum M-eigenvalue via the extreme eigenvalue of the symmetric matrices extracted from elasticity Z-tensors without irreducible conditions. Based on the lower bound estimations for the minimum M-eigenvalue, we provide some checkable sufficient or necessary conditions for the strong ellipticity condition. Numerical examples are given to demonstrate the proposed results.
Citation: |
[1] |
H. Che, H. Chen and Y. Wang, On the M-eigenvalue estimation of fourth-order partially symmetric tensors, J. Ind. Manag. Optim., 16 (2020), 309-324.
doi: 10.3934/jimo.2018153.![]() ![]() ![]() |
[2] |
S. Chirita, A. Danescu and M. Ciarletta, On the strong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27.
doi: 10.1007/s10659-006-9096-7.![]() ![]() ![]() |
[3] |
B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 257-263.
doi: 10.3934/dcdsb.2001.1.257.![]() ![]() ![]() |
[4] |
W. Ding, L. Qi and Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.
doi: 10.1016/j.laa.2013.08.038.![]() ![]() ![]() |
[5] |
W. Ding, J. Liu, L. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, Appl. Math. Comput., 373 (2020), 124982.
doi: 10.1016/j.amc.2019.124982.![]() ![]() ![]() |
[6] |
M. E. Gurtin, The Linear Theory of Elasticity, Handbuch der Physik, Springer, Berlin, 1972.
![]() |
[7] |
D. Han, H. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13.
doi: 10.1007/s10659-009-9205-5.![]() ![]() ![]() |
[8] |
C. Hillar and L. H. Lim, Most tensor problems are NP hard, J. ACM, 60 (2013), 1-39.
doi: 10.1145/2512329.![]() ![]() ![]() |
[9] |
J. He, Y. Wei and C. Li, M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity, Appl. Math. Lett., 102 (2020), 106137.
doi: 10.1016/j.aml.2019.106137.![]() ![]() ![]() |
[10] |
J. He, G. Xu and Y. Liu, Some inequalities for the minimum M-eigenvalue of elasticity $M$-tensors, J. Ind. Manag. Optim., 16 (2020), 3035-3045.
doi: 10.3934/jimo.2019092.![]() ![]() ![]() |
[11] |
R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.
![]() ![]() |
[12] |
Z. Huang, X. Li and Y. Wang, Bi-block positive semidefiniteness of bi-block symmetric tensors, Front. Math. China, 16 (2021), 141-169.
doi: 10.1007/s11464-021-0874-0.![]() ![]() ![]() |
[13] |
Z. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, J. Comput. Appl. Math., 388 (2018), 22-43.
doi: 10.1016/j.cam.2018.01.025.![]() ![]() ![]() |
[14] |
S. Li, C. Li and Y. Li, M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor, J. Comput. Appl. Math., 356 (2019), 391-401.
doi: 10.1016/j.cam.2019.01.013.![]() ![]() ![]() |
[15] |
C. Ling, J. Nie, L. Qi and Y. Ye, Bi-quadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Optim., 20 (2009), 1286-1310.
doi: 10.1137/080729104.![]() ![]() ![]() |
[16] |
C. Padovani, Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 37 (2002), 515-525.
doi: 10.1023/A:1020946506754.![]() ![]() ![]() |
[17] |
L. Qi, H. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349-364.
doi: 10.1007/s11464-009-0016-6.![]() ![]() ![]() |
[18] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017.
doi: 10.1137/1.9781611974751.ch1.![]() ![]() ![]() |
[19] |
C. Sang, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2.![]() ![]() ![]() |
[20] |
J. Walton and J. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Internat. J. Non-Linear Mech., 38 (2003), 441-455.
doi: 10.1016/S0020-7462(01)00066-X.![]() ![]() ![]() |
[21] |
G. Wang, L. Sun and L. Liu, M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors, Complexity, (2020), 247478.
![]() |
[22] |
G. Wang, L. Sun and X. Wang, Sharp bounds on the minimum M-eigenvalue of elasticity Z$-tensors and identifying strong ellipticity, J. Appl. Anal. Comput., 11 (2021), 2114-2130.
doi: 10.11948/20200344.![]() ![]() ![]() |
[23] |
G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear Multlinear Algebra, 68 (2020), 1817-1834.
doi: 10.1080/03081087.2018.1561823.![]() ![]() ![]() |
[24] |
G. Wang and Y. Zhang, Z-eigenvalue exclusion theorems for tensors, J. Ind. Manag. Optim., 16 (2020), 1987-1998.
doi: 10.3934/jimo.2019039.![]() ![]() ![]() |
[25] |
G. Wang, G. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009.![]() ![]() ![]() |
[26] |
K. Wang, J. Cao and H. Pei, Robust extreme learning machine in the presence of outliers by iterative reweighted algorithm, Appl. Math. Comput., 377 (2020), 125186.
doi: 10.1016/j.amc.2020.125186.![]() ![]() ![]() |
[27] |
Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633.![]() ![]() ![]() |
[28] |
L. Zhang, L. Qi and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339.![]() ![]() ![]() |
[29] |
J. Zhao and C. Sang, New bounds for the minimum eigenvalue of M-tensors, Open Math., 15 (2017), 296-303.
doi: 10.1515/math-2017-0018.![]() ![]() ![]() |
[30] |
L. Zubov and A. Rudev, On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials, Z. Angew. Math. Mech., 96 (2016), 1096-1102.
doi: 10.1002/zamm.201500167.![]() ![]() ![]() |