[1]
|
Z. Bai and R. Li, Minimization principles for the linear response eigenvalue problem I: Theory, SIAM J. Matrix Anal. Appl., 33 (2012), 1075-1100.
doi: 10.1137/110838960.
|
[2]
|
Z. Bai and R. Li, Minimization principles for the linear response eigenvalue problem II: Computation, SIAM J. Matrix Anal. Appl., 34 (2013), 392-416.
doi: 10.1137/110838972.
|
[3]
|
Z. Bai, R. Li and W. Lin, Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods, Sci. China Math., 59 (2016), 1443-1460.
doi: 10.1007/s11425-016-0297-1.
|
[4]
|
P. Benner, H. Fassbender and M. Stoll, A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process, Linear Algebra Appl., 435 (2011), 578-600.
doi: 10.1016/j.laa.2010.04.048.
|
[5]
|
M. E. Casida, Time-dependent density-functional response theory for molecules, Recent Advances in Density Functional Methods, (1995), 155–192.
doi: 10.1142/9789812830586_0005.
|
[6]
|
U. Flaschka, W. Lin and J. Wu, A KQZ algorithm for solving linear-response eigenvalue equations, Linear Algebra Appl., 165 (1992), 93-123.
doi: 10.1016/0024-3795(92)90231-X.
|
[7]
|
G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 205-224.
doi: 10.1137/0702016.
|
[8]
|
M. Gruning, A. Marini and X. Gonze, Exciton-plasmon states in nanoscale materials: Breakdown of the Tamm-Dancoff approximation, Nano Letters, 9 (2009), 2820-2824.
doi: 10.1021/nl803717g.
|
[9]
|
W. Lin, P. van Dooren and Q. Xu, Equivalent Characterizations of Periodical Ininvariant Subspaces, NCTS Preprints Series 1998-8, National Center for Theoretical Sciences, Math. Division, National Tsing Hua University, 1998.
|
[10]
|
X. Liu, Z. Wen and Y. Zhang, Limited memory block Krylov subspace optimization for computing dominant singular value decompositions, SIAM J. Sci. Comput., 35 (2013), A1641–A1668.
doi: 10.1137/120871328.
|
[11]
|
X. Liu, Z. Wen and Y. Zhang, An efficient Gauss-Newton algorithm for symmetric low-rank product matrix approximations, SIAM J. Optim., 25 (2015), 1571-1608.
doi: 10.1137/140971464.
|
[12]
|
M. J. Lucero, A. M. N. Niklasson, S. Tretiak and M. Challacombe, Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory, J. Chem. Phys., 129 (2008), 064114.
doi: 10.1063/1.2965535.
|
[13]
|
M. T. Lusk and A. E. Mattsson, High-performance computing for materials design to advance energy science, MRS Bulletin, 36 (2011), 169-174.
doi: 10.1557/mrs.2011.30.
|
[14]
|
J. Olsen and P. Jorgensen, Linear and nonlinear response functions for an exact state and for an MCSCF state, J. Chem. Phys., 82 (1985), 3235-3264.
doi: 10.1063/1.448223.
|
[15]
|
G. Onida, L. Reining and A. Rubio, Electronic excitations: Density-functional versus manybody Green's function approaches, Rev. Modern Phys., 74 (2002), 601-659.
doi: 10.1103/RevModPhys.74.601.
|
[16]
|
D. Rocca, D. Lu and G. Galli, Ab initio calculations of optical absorpation spectra: Solution of the Bethe-Salpeter equation within density matrix perturbation theory, J. Chem. Phys., 133 (2010), 164109.
|
[17]
|
Y. Saad, J. R. Chelikowsky and S. M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Rev., 52 (2010), 3-54.
doi: 10.1137/060651653.
|
[18]
|
Z. Teng and R. Li, Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem, J. Comput. Appl. Math., 247 (2013), 17-33.
doi: 10.1016/j.cam.2013.01.003.
|
[19]
|
Z. Teng, Y. Zhou and R. Li, A block Chebyshev-Davidson method for linear response eigenvalue problems, Adv. Comput. Math., 42 (2016), 1103-1128.
doi: 10.1007/s10444-016-9455-2.
|
[20]
|
Z. Wen, C. Yang, X. Liu and Y. Zhang, Trace-penalty minimization for large-scale eigenspace computation, J. Sci. Comput., 66 (2016), 1175-1203.
doi: 10.1007/s10915-015-0061-0.
|
[21]
|
H. Zhong and H. Xu, Weighted Golub-Kahan-Lanczos bidiagonalization algorithms, Electron. Trans. Numer. Anal., 47 (2017), 153-178.
doi: 10.1553/etna_vol47s153.
|