[1]
|
A. Akhil, The CERTS microgrid concept, White Paper for Transmission Reliability Program, U.S, 2002.
|
[2]
|
R. Baldick, B. H. Kim, C. Chase and Y. Luo, A fast distributed implementaion of optimal power flow, IEEE Transactions on Power Systems, 14 (1999), 858-864.
|
[3]
|
F. Barbir and T. Gómez, Efficiency and economics of proton exchange membrane (PEM) fuel cells, International Journal of Hydrogen Energy, 21 (1996), 891-901.
|
[4]
|
A. Chaouachi, R. M. Kamel, R. Andoulsi and K. Nagasaka, Multiobjective intelligent energy management for a microgrid, IEEE Transactions on Industrial Electronics, 60 (2013), 1688-1699.
doi: 10.1109/TIE.2012.2188873.
|
[5]
|
K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Goldberg. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Ltd., Chichester, 2001.
|
[6]
|
K. Deb and H. Beyer, Self-adaptive genetic algorithms with simulated binary crossover, Evolutionary Computation, 9 (2001), 197-221.
doi: 10.1162/106365601750190406.
|
[7]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multi objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
|
[8]
|
F. Facchinei, A. Fischer and M. Herrich, An LP-Newton method: Nonsmooth equations, KKT systems, and nonisolated solutions, Math. Program., 146 (2014), 1-36.
doi: 10.1007/s10107-013-0676-6.
|
[9]
|
H. Farzin, M. Fotuhi-Firuzabad and M. Moeini-Aghtaie, Developing a hierarchical scheme for outage management in multi-microgrids, IEEE Power Tech Conference, IEEE, 2015.
doi: 10.1109/PTC.2015.7232575.
|
[10]
|
N. Gil and J. Lopes, Hierarchical frequency control scheme for islanded multi-microgrids operation, 2007 IEEE Lausanne Power Tech, 2007.
doi: 10.1109/PCT.2007.4538363.
|
[11]
|
T. Gjengedal, S. Johansen and O. Hansen, A qualitative approach to economic-environment dispatch-treatment of multiple pollutants, IEEE Transactions on Energy Conversion, 7 (1992), 367-373.
doi: 10.1109/60.148554.
|
[12]
|
C. Huang, D. Yue, S. Deng and J. Xie, Optimal scheduling of microgrid with multiple distributed resources using interval optimization, Energies, 10 (2017), 399-422.
doi: 10.3390/en10030339.
|
[13]
|
C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, European J. Oper. Res., 188 (2008), 1-13.
doi: 10.1016/j.ejor.2007.03.031.
|
[14]
|
P. Kou, D. Liang, L. Gao and F. Gao, Stochastic coordination of plug-in electric vehicles and wind turbines in microgrid: A model predictive control approach, IEEE Trans. Smart Grid, 7 (2016), 1537-1551.
doi: 10.1109/TSG.2015.2475316.
|
[15]
|
X. Lu, K. Zhou and S. Yang, Multi-objective optimal dispatch of microgrid containing electric vehicles, Journal of Cleaner Production, 165 (2017), 1572-1581.
doi: 10.1016/j.jclepro.2017.07.221.
|
[16]
|
T. Lv, Q. Ai and Y. Zhao, A bi-level multi-objective optimal operation of grid-connected microgrids, Electric Power Systems Research, 131 (2016), 60-70.
doi: 10.1016/j.epsr.2015.09.018.
|
[17]
|
A. A. Moghaddam, A. Seifi, T. Niknam and M. R. Pahlavani, Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source, Energy, 36 (2011), 6490-6507.
doi: 10.1016/j.energy.2011.09.017.
|
[18]
|
F. A. Mohamed and H. N. Koivo, System modelling and online optimal management of microgrid using mesh adaptive direct search, International Journal of Electrical Power and Energy Systems, 32 (2010), 398-407.
doi: 10.1016/j.ijepes.2009.11.003.
|
[19]
|
M. H. Moradi, M. Abedini and S. M. Hosseinian, Optimal operation of autonomous microgrid using HS–GA, International Journal of Electrical Power and Energy Systems, 77 (2016), 210-220.
doi: 10.1016/j.ijepes.2015.11.043.
|
[20]
|
M. Muslu, Economic dispatch with environmental considerations: Trade off curves and emission reduction rates, Electric Power Systems Research, 71 (2004), 153-158.
doi: 10.1016/j.epsr.2004.01.009.
|
[21]
|
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun and J. Wu, MOEA/D with adaptive weight adjustment, Evolutionary Computation, 22 (2014), 231-264.
doi: 10.1162/EVCO_a_00109.
|
[22]
|
J. Radosavljević, M. Jevtić and D. Klimenta, Energy and operation management of a microgrid using particle swarm optimization, Engineering Optimization, 48 (2016), 811-830.
|
[23]
|
W. Saad, Z. Han and H. V. Poor, Coalitional game theory for cooperative micro-grid distribution networks, IEEE International Conf on Communications Workshops, IEEE, 2011.
doi: 10.1109/iccw.2011.5963577.
|
[24]
|
D. Saéz, F. A$\acute{\rm{v}}$ila, D. Olivares, C. Canizares and L. Mariń, Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids, IEEE Transactions on Smart Grid, 6 (2015), 548-556.
|
[25]
|
W. F. Tinney and C. E. Hart, Power flow solution by newton's method, IEEE Transactions on Power Apparatus and Systems, 86 (1967), 1449-1460.
doi: 10.1109/TPAS.1967.291823.
|
[26]
|
J. Vasiljevska, J. P. Lopes and M. Matos, Multi-microgrid impact assessment using multi criteria decision aid methods, IEEE Power Tech Conference, IEEE, 2009.
doi: 10.1109/PTC.2009.5282054.
|
[27]
|
D. V. Veldhuizen and G. B. Lamont, On measuring multiobjective evolutionary algorithm performance, Proceedings of Evolutionary Computation, 2000.
doi: 10.1109/CEC.2000.870296.
|
[28]
|
J. L. Verdagay, Fuzzy Mathematical Programming, North-holland, Amsterdam, 1982.
|
[29]
|
S. Wang, X. Fan, L. Han and L. Ge, Improved interval optimization method based on differential evolution for microgrid economic dispatch, Electric Machines and Power Systems, 43 (2015), 1882-1890.
doi: 10.1080/15325008.2015.1057783.
|
[30]
|
Y. Wang, Q. Xia and C. Kang, Unit commitment with volatile node injections by using interval optimization, IEEE Transactions on Power Systems, 26 (2011), 1705-1713.
doi: 10.1109/TPWRS.2010.2100050.
|
[31]
|
C. Wei, Z. M. Fadlullah, N. Kato and A. Takeuchi, GT-CFS: A game theoretic coalition formulation strategy for reducing power loss in micro grids, IEEE Trans on Parallel and Distributed Systems, 25 (2014), 2307-2317.
doi: 10.1109/TPDS.2013.178.
|
[32]
|
A. J. Wood and B. F. Wollenberg, Power Generation, Operation and Control, John Wiley and Sons, New York, 1996.
|
[33]
|
H. Wu, X. Liu and M. Ding, Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm, International Journal of Electrical Power and Energy Systems, 63 (2014), 336-346.
doi: 10.1016/j.ijepes.2014.06.002.
|
[34]
|
Q. Xiao, X. Guo and D. Li, Partial disassembly line balancing under uncertainty: Robust optimization models and an improved migrating birds optimization algorithm, International Journal of Production Research, 59 (2021), 2977-2995.
doi: 10.1080/00207543.2020.1744765.
|
[35]
|
N. Yu, J. S. Kang, C. C. Chang, T. Y. Lee and D. Y. Lee, Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan, Energy, 113 (2016), 671-682.
doi: 10.1016/j.energy.2016.07.066.
|
[36]
|
Q. Zhang and H. Li, MOEA/D: A multi objective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 11 (2007), 712-731.
|
[37]
|
Q. Zhang, H. Li, D. Maringer and E. Tsang, MOEA/D with NBI-style chebyshev approach for portfolio management, IEEE Congress on Evolutionary Computation, 2010.
|
[38]
|
E. Zitzler and L. Thiele, Multi-objective evolutionary algorithms: A comparative case study and the strength pareto approach, IEEE Transactions on Evolutionary Computation, 3 (1999), 257-271.
|
[39]
|
E. V. Zyl and A. P. Engelbrecht, A subspace-based method for PSO initialization, IEEE Symposium Series on Computational Intelligence. IEEE, 2016.
|