[1]
|
E. Amaldi and V. Kann, On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theoret. Comput. Sci., 209 (1998), 237-260.
doi: 10.1016/S0304-3975(97)00115-1.
|
[2]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[3]
|
A. M. Bruckstein, D. L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), 34-81.
doi: 10.1137/060657704.
|
[4]
|
W. F. Cao, J. Sun and Z. B. Xu, Fast image deconvolution using closed-form thresholding formulas of $L_q(q=\frac{1}{2}, \frac{2}{3})$ regularization, Journal of Visual Communication and Image Representation, 24 (2013), 31-41.
|
[5]
|
E. J. Candès, The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris, 346 (2008), 589-592.
doi: 10.1016/j.crma.2008.03.014.
|
[6]
|
E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), 4203-4215.
doi: 10.1109/TIT.2005.858979.
|
[7]
|
E. J. Candès, M. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $l_1$ minimization, J. Fourier Anal. Appl., 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x.
|
[8]
|
X. J. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program., 134 (2012), 71-99.
doi: 10.1007/s10107-012-0569-0.
|
[9]
|
X. J. Chen, D. D. Ge, Z. Z. Wang and Y. Y. Ye, Complexity of unconstrained $L_2-L_p$ minimization, Math. Program., 143 (2014), 371-383.
doi: 10.1007/s10107-012-0613-0.
|
[10]
|
R. A. DeVore, B. Jawerth and B. J. Lucier, Image compression through wavelet transform coding, IEEE Trans. Inform. Theory, 38 (1992), 719-746.
doi: 10.1109/18.119733.
|
[11]
|
D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009.
|
[12]
|
D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582.
|
[13]
|
M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly and R. Baraniuk, Single-pixel imaging via compressive sampling, IEEE Signal Processing Magazine, 25 (2008), 83-91.
doi: 10.1109/MSP.2007.914730.
|
[14]
|
E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 2765-2781.
doi: 10.1109/TPAMI.2013.57.
|
[15]
|
J. Q. Fan and R. Z. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96 (2001), 1348-1360.
doi: 10.1198/016214501753382273.
|
[16]
|
D. Foster and E. George, The risk inflation criterion for multiple regression, Ann. Statist., 22 (1994), 1947-1975.
doi: 10.1214/aos/1176325766.
|
[17]
|
X. R. Gao, Y. Q. Bai and Q. Li, A sparse optimization problem with hybrid $L_2$-$L_p$ regularization for application of magnetic resonance brain images, J. Combinatorial Optimization, 42 (2019), 760-784.
doi: 10.1007/s10878-019-00479-x.
|
[18]
|
S. Jiang, S.-C. Fang and Q. W. Jin, Sparse solutions by a quadratically constrained $l_q (0 < q < 1)$ minimization model, Informs J. Comput., 33 (2021), 511-530.
doi: 10.1287/ijoc.2020.1004.
|
[19]
|
S. Jiang, S.-C. Fang, T. T. Nie and W. X. Xing, A gradient descent based algorithm for $l_p$ minimization, European J. Oper. Res., 283 (2020), 47-56.
doi: 10.1016/j.ejor.2019.11.051.
|
[20]
|
M. J. Lai and J. Y. Wang, An unconstrained $l_q$ minimization with $0 < q \leq 1$ for sparse solution of underdetermined linear systems, SIAM J. Optim., 21 (2011), 82-101.
doi: 10.1137/090775397.
|
[21]
|
M. J. Lai, Y. Xu and W. T. Yin, Improved iteratively reweighted least squares for unconstrained smoothed $l_q$ minimization, SIAM J. Numer. Anal., 51 (2013), 927-957.
doi: 10.1137/110840364.
|
[22]
|
Q. Li, Y. Bai, C. Yu and Y.-X. Yuan, A new piecewise quadratic approximation approach for $L_0$ norm minimization problem, Sci. China Math., 62 (2019), 185-204.
doi: 10.1007/s11425-017-9315-9.
|
[23]
|
Y. F. Lou, P. H. Yin, Q. He and J. Xin, Computing sparse representation in a highly coherent dictionary based on difference of $L_1$ and $L_2$, J. Sci. Comput., 64 (2015), 178-196.
doi: 10.1007/s10915-014-9930-1.
|
[24]
|
N. Meinshausen and B. Yu, Lasso-type recovery of sparse representations for high-dimensional data, Ann. Statist., 37 (2009), 246-270.
doi: 10.1214/07-AOS582.
|
[25]
|
D. Merhej, C. Diab, M. Khalil and R. Prost, Embedding prior knowledge within compressed sensing by neural networks, IEEE Transactions on Neural Networks, 22 (2011), 1638-1649.
doi: 10.1109/TNN.2011.2164810.
|
[26]
|
B. Natraajan, Sparse approximate solutions to linear systems, SIAM J. Comput., 24 (1995), 227-234.
doi: 10.1137/S0097539792240406.
|
[27]
|
I. Selesnick, Sparse regularization via convex analysis, IEEE Trans. Signal Process., 65 (2017), 4481-4494.
doi: 10.1109/TSP.2017.2711501.
|
[28]
|
H. Takeda, S. Farsiu and P. Milanfar, Deblurring using regularized locally adaptive kernel regression, IEEE Trans. Image Process., 17 (2008), 550-563.
doi: 10.1109/TIP.2007.918028.
|
[29]
|
R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[30]
|
Y. Wang, W. Q. Liu and G. L. Zhou, An efficient algorithm for non-convex sparse optimization, J. Ind. Manag. Optim., 15 (2019), 2009-2021.
doi: 10.3934/jimo.2018134.
|
[31]
|
Z. B. Xu, X. Y. Chang, F. M. Xu and H. Zhang, $L_{1/2}$ regularization: A thresholding representation theory and a fast solver, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027.
|
[32]
|
B. C. Zhang, W. Hong and Y. R. Wu, Sparse microwave imaging: Principles and applications, Sci. China Inf. Sci., 55 (2012), 1722-1754.
doi: 10.1007/s11432-012-4633-4.
|
[33]
|
C. Zhang, J. J. Wang and N. H. Xiu, Robust and sparse portfolio model for index tracking, J. Ind. Manag. Optim., 15 (2019), 1001-1015.
|
[34]
|
H. Zou, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc., 101 (2006), 1418-1429.
doi: 10.1198/016214506000000735.
|