• Previous Article
    An EOQ inventory model for deteriorating items with controllable deterioration rate under stock-dependent demand rate and non-linear holding cost
  • JIMO Home
  • This Issue
  • Next Article
    Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem
doi: 10.3934/jimo.2021216
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Sufficient optimality conditions and Mond-Weir duality results for a fractional multiobjective optimization problem

1. 

LAMA, FSDM, Sidi Mohamed Ben Abdellah University, Fez, Morocco

2. 

FSDM, Sidi Mohamed Ben Abdellah University, Fez, Morocco

* Corresponding author: Fatima Zahra Rahou

Received  December 2020 Revised  September 2021 Early access December 2021

In this work, we are concerned with a fractional multiobjective optimization problem $ (P) $ involving set-valued maps. Based on necessary optimality conditions given by Gadhi et al. [14], using support functions, we derive sufficient optimality conditions for $ \left( P\right) , $ and we establish various duality results by associating the given problem with its Mond-Weir dual problem $ \left( D\right) . $ The main tools we exploit are convexificators and generalized convexities. Examples that illustrates our findings are also given.

Citation: Nazih Abderrazzak Gadhi, Fatima Zahra Rahou. Sufficient optimality conditions and Mond-Weir duality results for a fractional multiobjective optimization problem. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2021216
References:
[1]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Mathematical Methods of Operations Research, 48 (1998), 187-200.  doi: 10.1007/s001860050021.

[2]

F. H. Clarke, Optimization and nonsmooth analysis, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1983.

[3]

H. W. Corley, Optimality conditions for maximization of set-valued functions, Journal of Optimization Theory and Applications, 58 (1988), 1-10.  doi: 10.1007/BF00939767.

[4]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions, Journal of Optimization Theory and Applications, 113 (2002), 41-64.  doi: 10.1023/A:1014853129484.

[5]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization, Optimization, 53 (2004), 77-94.  doi: 10.1080/02331930410001661505.

[6]

P. H. Dien, Locally Lipschitzian set-valued maps and general extremal problems with inclusion constraints, Acta Mathematica Vietnamica, 1 (1983), 109-122. 

[7]

P. H. Dien, On the regularity condition for the extremal problem under locally Lipschitz inclusion constraints, Applied Mathematics and Optimization, 13 (1985), 151-161.  doi: 10.1007/BF01442204.

[8]

V. F. Demyanov, Convexification and concavication of a positively homegeneous function by the same family of linear functions, Report 3, 208, 802, Universita di Pisa, 1994.

[9]

V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential, Journal of Global Optimization, 10 (1997), 305-326.  doi: 10.1023/A:1008246130864.

[10]

B. El Abdouni and L. Thibault, Conditions d'optimalité pour les problèmes d'optimisation de Pareto dont les Objectifs sont des multiapplications, Thèse de Doctorat d'état, Université Mohamed 5, Faculté des Sciences, Rabat, 1995.

[11]

N. Gadhi, Optimality conditions for difference of convex set-valued mappings, Positivity, 9 (2005), 687-703.  doi: 10.1007/s11117-005-2786-8.

[12]

N. GadhiK. Hamdaoui and M. El idrissi, Sufficient optimality conditions and duality results for a bilevel multiobjective optimization problem via a $\psi $ reformulation, Optimization, 69 (2020), 681-702.  doi: 10.1080/02331934.2019.1625901.

[13]

N. Gadhi and A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraint, Journal of Global Optimization, 56 (2013), 489-501.  doi: 10.1007/s10898-012-9849-8.

[14]

N. GadhiK. HamdaouiM. El idrissi and F. Rahou, Necessary optimality conditions for a fractional multiobjective optimization problem, RAIRO-Operations Research, 55 (2021), S1037-S1049.  doi: 10.1051/ro/2020049.

[15]

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, Journal of Optimization Theory and Applications, 101 (1999), 599-621.  doi: 10.1023/A:1021790120780.

[16]

A. Jourani and L. Thibault, Approximations and metric regularity in mathematical programming in Banach space, Mathematics of Operations Research, 18 (1993), 255-510.  doi: 10.1287/moor.18.2.390.

[17]

B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexificators, Journal of Optimization Theory and Applications, 152 (2012), 632-651.  doi: 10.1007/s10957-011-9941-0.

[18]

B. S. Mordukhovich, The extremal principle and its applications to optimization and economics, In Optimization and Related Topics, Applied Optimization, 47, 2001, 343–499. doi: 10.1007/978-1-4757-6099-6_17.

[19]

B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces, Journal of Convex Analysis, 2 (1995), 211-227. 

[20]

J.-P. Penot and P. Michel, A generalized derivative for calm and stable functions, Differential and Integral Equations, 5 (1992), 433-454. 

[21]

Y. Sawaragi and T. Tanino, Conjugate maps and duality in multiobjective optimization, Journal of Optimization Theory and Applications, 31 (1980), 473-499.  doi: 10.1007/BF00934473.

show all references

References:
[1]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Mathematical Methods of Operations Research, 48 (1998), 187-200.  doi: 10.1007/s001860050021.

[2]

F. H. Clarke, Optimization and nonsmooth analysis, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1983.

[3]

H. W. Corley, Optimality conditions for maximization of set-valued functions, Journal of Optimization Theory and Applications, 58 (1988), 1-10.  doi: 10.1007/BF00939767.

[4]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions, Journal of Optimization Theory and Applications, 113 (2002), 41-64.  doi: 10.1023/A:1014853129484.

[5]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization, Optimization, 53 (2004), 77-94.  doi: 10.1080/02331930410001661505.

[6]

P. H. Dien, Locally Lipschitzian set-valued maps and general extremal problems with inclusion constraints, Acta Mathematica Vietnamica, 1 (1983), 109-122. 

[7]

P. H. Dien, On the regularity condition for the extremal problem under locally Lipschitz inclusion constraints, Applied Mathematics and Optimization, 13 (1985), 151-161.  doi: 10.1007/BF01442204.

[8]

V. F. Demyanov, Convexification and concavication of a positively homegeneous function by the same family of linear functions, Report 3, 208, 802, Universita di Pisa, 1994.

[9]

V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential, Journal of Global Optimization, 10 (1997), 305-326.  doi: 10.1023/A:1008246130864.

[10]

B. El Abdouni and L. Thibault, Conditions d'optimalité pour les problèmes d'optimisation de Pareto dont les Objectifs sont des multiapplications, Thèse de Doctorat d'état, Université Mohamed 5, Faculté des Sciences, Rabat, 1995.

[11]

N. Gadhi, Optimality conditions for difference of convex set-valued mappings, Positivity, 9 (2005), 687-703.  doi: 10.1007/s11117-005-2786-8.

[12]

N. GadhiK. Hamdaoui and M. El idrissi, Sufficient optimality conditions and duality results for a bilevel multiobjective optimization problem via a $\psi $ reformulation, Optimization, 69 (2020), 681-702.  doi: 10.1080/02331934.2019.1625901.

[13]

N. Gadhi and A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraint, Journal of Global Optimization, 56 (2013), 489-501.  doi: 10.1007/s10898-012-9849-8.

[14]

N. GadhiK. HamdaouiM. El idrissi and F. Rahou, Necessary optimality conditions for a fractional multiobjective optimization problem, RAIRO-Operations Research, 55 (2021), S1037-S1049.  doi: 10.1051/ro/2020049.

[15]

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators, Journal of Optimization Theory and Applications, 101 (1999), 599-621.  doi: 10.1023/A:1021790120780.

[16]

A. Jourani and L. Thibault, Approximations and metric regularity in mathematical programming in Banach space, Mathematics of Operations Research, 18 (1993), 255-510.  doi: 10.1287/moor.18.2.390.

[17]

B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexificators, Journal of Optimization Theory and Applications, 152 (2012), 632-651.  doi: 10.1007/s10957-011-9941-0.

[18]

B. S. Mordukhovich, The extremal principle and its applications to optimization and economics, In Optimization and Related Topics, Applied Optimization, 47, 2001, 343–499. doi: 10.1007/978-1-4757-6099-6_17.

[19]

B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces, Journal of Convex Analysis, 2 (1995), 211-227. 

[20]

J.-P. Penot and P. Michel, A generalized derivative for calm and stable functions, Differential and Integral Equations, 5 (1992), 433-454. 

[21]

Y. Sawaragi and T. Tanino, Conjugate maps and duality in multiobjective optimization, Journal of Optimization Theory and Applications, 31 (1980), 473-499.  doi: 10.1007/BF00934473.

[1]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial and Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[2]

Xiaoqing Ou, Suliman Al-Homidan, Qamrul Hasan Ansari, Jiawei Chen. Image space analysis for uncertain multiobjective optimization problems: Robust optimality conditions. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021199

[3]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[4]

Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial and Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881

[5]

Jutamas Kerdkaew, Rabian Wangkeeree, Rattanaporn Wangkeeree. Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 93-107. doi: 10.3934/naco.2021053

[6]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial and Management Optimization, 2020, 16 (2) : 623-631. doi: 10.3934/jimo.2018170

[7]

David Yang Gao. Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints. Journal of Industrial and Management Optimization, 2005, 1 (1) : 53-63. doi: 10.3934/jimo.2005.1.53

[8]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

[9]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial and Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[10]

Vladimir Srochko, Vladimir Antonik, Elena Aksenyushkina. Sufficient optimality conditions for extremal controls based on functional increment formulas. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 191-199. doi: 10.3934/naco.2017013

[11]

Bhawna Kohli. Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3209-3221. doi: 10.3934/jimo.2020114

[12]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

[13]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[14]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[15]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[16]

Truong Q. Bao, Boris S. Mordukhovich. Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1069-1096. doi: 10.3934/dcds.2011.31.1069

[17]

Najeeb Abdulaleem. Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022004

[18]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[19]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[20]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (213)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]