
-
Previous Article
Sparse minimax portfolio and Sharpe ratio models
- JIMO Home
- This Issue
-
Next Article
A directional heuristics pulse algorithm for a two resources constrained shortest path problem with reinitialization
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
A SMOTE-based quadratic surface support vector machine for imbalanced classification with mislabeled information
1. | School of Business Administration, Southwestern University of Finance and Economics, Sichuan, China |
2. | School of Business Administration and Collaborative Innovation Center of Financial Security, Southwestern University of Finance and Economics, Chengdu, 611130, China |
3. | School of Business Administration, Southwestern University of Finance and Economics, Chengdu, China |
Recently, Synthetic Minority Over-Sampling Technique (SMOTE) has been widely used to handle the imbalanced classification. To address the issues of existing benchmark methods, we propose a novel scheme of SMOTE based on the K-means and Intuitionistic Fuzzy Set theory to assign proper weights to the existing points and generate new synthetic points from them. Besides, we introduce the state-of-the-art kernel-free fuzzy quadratic surface support vector machine (QSSVM) to do the classification. Finally, the numerical experiments on various artificial and real data sets strongly demonstrate the validity and applicability of our proposed method, especially in the presence of mislabeled information.
References:
[1] |
S. Barua, M. M. Islam, X. Yao and K. Murase,
MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning, IEEE Transactions on Knowledge & Data Engineering, 26 (2014), 405-425.
doi: 10.1109/TKDE.2012.232. |
[2] |
N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,
SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16 (2002), 321-357.
doi: 10.1613/jair.953. |
[3] |
E. Duchesnay, A. Cachia, N. Boddaert, N. Chabane, J.-F. Mangin, J.-L. Martinot, F. Brunelle and M. Zilbovicius,
Feature selection and classification of imbalanced datasets: Application to PET images of children with autistic spectrum disorders, Neuroimage, 57 (2011), 1003-1014.
doi: 10.1016/j.neuroimage.2011.05.011. |
[4] |
A. Gelman and D. B. Rubin,
Inference from iterative simulation using multiple sequences, Statistical Science, 7 (1992), 457-472.
doi: 10.1214/ss/1177011136. |
[5] |
R. Y. Goh and L. S. Lee, Credit scoring: A review on support vector machines and metaheuristic approaches, Adv. Oper. Res., 2019 (2019), 1974794, 30pp.
doi: 10.1155/2019/1974794. |
[6] |
R. S. Gong and S. H. Huang,
A Kolmogorov-Smirnov statistic based segmentation approach to learning from imbalanced datasets: With application in property refinance prediction, Expert Systems with Applications, 39 (2012), 6192-6200.
doi: 10.1016/j.eswa.2011.12.011. |
[7] |
M. H. Ha, C. Wang and J. Q. Chen,
The support vector machine based on intuitionistic fuzzy number and kernel function, Soft Computing, 17 (2013), 635-641.
doi: 10.1007/s00500-012-0937-y. |
[8] |
H. Han, W. Y. Wang and B. H. Mao,
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, International Conference on Intelligent Computing, 2005 (3644), 878-887.
doi: 10.1007/11538059_91. |
[9] |
X. P. Hua, S. Xu, J. Gao and S. F. Ding,
L1-norm loss-based projection twin support vector machine for binary classification, Soft Computing, 23 (2019), 10649-10659.
doi: 10.1007/s00500-019-04002-6. |
[10] |
W. C. Lin, C. F. Tsai, Y. H. Hu and J. S. Jhang,
Clustering-based undersampling in class-imbalanced data-ScienceDirect, Information Sciences, 409/410 (2017), 17-26.
doi: 10.1016/j.ins.2017.05.008. |
[11] |
J. Luo, S. C. Fang, Y. Bai and Z. Deng,
Fuzzy quadratic surface support vector machine based on fisher discriminant analysis, J. Ind. Manag. Optim., 12 (2016), 357-373.
|
[12] |
J. Luo, S. C. Fang, Z. B. Deng and X. L. Guo, Soft quadratic surface support vector machine for binary classification, Asia-Pac. J. Oper. Res., 33 (2016), 1650046, 22 pp.
doi: 10.1142/S0217595916500469. |
[13] |
K. Miroslav, H. Robert and M. Stan,
Machine learning for the detection of oil spills in satellite radar images, Machine Learning, 30 (1998), 195-215.
|
[14] |
E. Ramentol, Y. Caballero, R. Bello and F. Herrera,
SMOTE-RSB: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory, Knowledge and Information Systems, 33 (2012), 245-265.
doi: 10.1007/s10115-011-0465-6. |
[15] |
E. Ramentol, N. Verbiest, R. Bello, Y. Caballero, C. Cornelts and F. Herrera,
SMOTE-FRST: A new resampling method using fuzzy rough set theory, Uncertainty Modeling in Knowledge Engineering and Decision Making, 7 (2012), 800-805.
doi: 10.1142/9789814417747_0128. |
[16] |
B. SchLkopf, J. C. Platt, J. S. Taylor, A. J. Smola and R. C. Williamson,
Estimating the support of a high-dimensional distribution, Neural Computation, 13 (2001), 1443-1471.
doi: 10.1162/089976601750264965. |
[17] |
J. Taeho and J. Nathalie,
Class imbalances versus small disjuncts, Acm Sigkdd Explorations Newsletter, 6 (2004), 40-49.
doi: 10.1145/1007730.1007737. |
[18] |
M. A. Tahir, J. Kittler, K. Mikolajczyk and F. Yan,
A multiple expert approach to the class imbalance problem using inverse random under sampling, International Workshop on Multiple Classifier Systems, 5519 (2009), 82-91.
doi: 10.1007/978-3-642-02326-2_9. |
[19] |
Y. Tian, Z. B. Deng, J. Luo and Y. Q. Li,
An intuitionistic fuzzy set based S$^3$VM model for binary classification with mislabeled information, Fuzzy Optim. Decis. Mak., 17 (2018), 475-494.
doi: 10.1007/s10700-017-9282-z. |
[20] |
Y. Tian, M. Sun, Z. B. Deng, J. Luo and Y. Q. Li,
A new fuzzy set and non-kernel SVM approach for mislabeled binary classification with applications, IEEE Transactions on Fuzzy Systems, 25 (2017), 1536-1545.
doi: 10.1109/TFUZZ.2017.2752138. |
[21] |
[0885-6125] J. M. Tomczak and M. Zie.ba, Probabilistic combination of classification rules and its application to medical diagnosis, Mach. Learn., 101 (2015), 105-135.
doi: 10.1007/s10994-015-5508-x. |
[22] |
N. Verbiest, E. Ramentol, C. Cornelis and F. Herrera,
Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection, Applied Soft Computing, 22 (2014), 511-517.
doi: 10.1016/j.asoc.2014.05.023. |
[23] |
R. F. Xu, T. Chen, Y. Q. Xia, Q. Lu, B. Liu and X. Wang,
Word embedding composition for data imbalances in sentiment and emotion classification, Cognitive Computation, 7 (2015), 226-240.
doi: 10.1007/s12559-015-9319-y. |
[24] |
T. Yu, J. Debenham, T. Jan and S. Simoff,
Combine vector quantization and support vector machine for imbalanced datasets, Artificial Intelligence in Theory and Practice, 217 (2012), 81-88.
doi: 10.1007/978-0-387-34747-9_9. |
[25] |
Y. T. Xu, Q. Wang, X. Y. Pang and Y. Tian,
Maximum margin of twin spheres machine with pinball loss for imbalanced data classification, Applied Intelligence, 48 (2018), 23-34.
doi: 10.1007/s10489-017-0961-9. |
show all references
References:
[1] |
S. Barua, M. M. Islam, X. Yao and K. Murase,
MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning, IEEE Transactions on Knowledge & Data Engineering, 26 (2014), 405-425.
doi: 10.1109/TKDE.2012.232. |
[2] |
N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,
SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16 (2002), 321-357.
doi: 10.1613/jair.953. |
[3] |
E. Duchesnay, A. Cachia, N. Boddaert, N. Chabane, J.-F. Mangin, J.-L. Martinot, F. Brunelle and M. Zilbovicius,
Feature selection and classification of imbalanced datasets: Application to PET images of children with autistic spectrum disorders, Neuroimage, 57 (2011), 1003-1014.
doi: 10.1016/j.neuroimage.2011.05.011. |
[4] |
A. Gelman and D. B. Rubin,
Inference from iterative simulation using multiple sequences, Statistical Science, 7 (1992), 457-472.
doi: 10.1214/ss/1177011136. |
[5] |
R. Y. Goh and L. S. Lee, Credit scoring: A review on support vector machines and metaheuristic approaches, Adv. Oper. Res., 2019 (2019), 1974794, 30pp.
doi: 10.1155/2019/1974794. |
[6] |
R. S. Gong and S. H. Huang,
A Kolmogorov-Smirnov statistic based segmentation approach to learning from imbalanced datasets: With application in property refinance prediction, Expert Systems with Applications, 39 (2012), 6192-6200.
doi: 10.1016/j.eswa.2011.12.011. |
[7] |
M. H. Ha, C. Wang and J. Q. Chen,
The support vector machine based on intuitionistic fuzzy number and kernel function, Soft Computing, 17 (2013), 635-641.
doi: 10.1007/s00500-012-0937-y. |
[8] |
H. Han, W. Y. Wang and B. H. Mao,
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning, International Conference on Intelligent Computing, 2005 (3644), 878-887.
doi: 10.1007/11538059_91. |
[9] |
X. P. Hua, S. Xu, J. Gao and S. F. Ding,
L1-norm loss-based projection twin support vector machine for binary classification, Soft Computing, 23 (2019), 10649-10659.
doi: 10.1007/s00500-019-04002-6. |
[10] |
W. C. Lin, C. F. Tsai, Y. H. Hu and J. S. Jhang,
Clustering-based undersampling in class-imbalanced data-ScienceDirect, Information Sciences, 409/410 (2017), 17-26.
doi: 10.1016/j.ins.2017.05.008. |
[11] |
J. Luo, S. C. Fang, Y. Bai and Z. Deng,
Fuzzy quadratic surface support vector machine based on fisher discriminant analysis, J. Ind. Manag. Optim., 12 (2016), 357-373.
|
[12] |
J. Luo, S. C. Fang, Z. B. Deng and X. L. Guo, Soft quadratic surface support vector machine for binary classification, Asia-Pac. J. Oper. Res., 33 (2016), 1650046, 22 pp.
doi: 10.1142/S0217595916500469. |
[13] |
K. Miroslav, H. Robert and M. Stan,
Machine learning for the detection of oil spills in satellite radar images, Machine Learning, 30 (1998), 195-215.
|
[14] |
E. Ramentol, Y. Caballero, R. Bello and F. Herrera,
SMOTE-RSB: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory, Knowledge and Information Systems, 33 (2012), 245-265.
doi: 10.1007/s10115-011-0465-6. |
[15] |
E. Ramentol, N. Verbiest, R. Bello, Y. Caballero, C. Cornelts and F. Herrera,
SMOTE-FRST: A new resampling method using fuzzy rough set theory, Uncertainty Modeling in Knowledge Engineering and Decision Making, 7 (2012), 800-805.
doi: 10.1142/9789814417747_0128. |
[16] |
B. SchLkopf, J. C. Platt, J. S. Taylor, A. J. Smola and R. C. Williamson,
Estimating the support of a high-dimensional distribution, Neural Computation, 13 (2001), 1443-1471.
doi: 10.1162/089976601750264965. |
[17] |
J. Taeho and J. Nathalie,
Class imbalances versus small disjuncts, Acm Sigkdd Explorations Newsletter, 6 (2004), 40-49.
doi: 10.1145/1007730.1007737. |
[18] |
M. A. Tahir, J. Kittler, K. Mikolajczyk and F. Yan,
A multiple expert approach to the class imbalance problem using inverse random under sampling, International Workshop on Multiple Classifier Systems, 5519 (2009), 82-91.
doi: 10.1007/978-3-642-02326-2_9. |
[19] |
Y. Tian, Z. B. Deng, J. Luo and Y. Q. Li,
An intuitionistic fuzzy set based S$^3$VM model for binary classification with mislabeled information, Fuzzy Optim. Decis. Mak., 17 (2018), 475-494.
doi: 10.1007/s10700-017-9282-z. |
[20] |
Y. Tian, M. Sun, Z. B. Deng, J. Luo and Y. Q. Li,
A new fuzzy set and non-kernel SVM approach for mislabeled binary classification with applications, IEEE Transactions on Fuzzy Systems, 25 (2017), 1536-1545.
doi: 10.1109/TFUZZ.2017.2752138. |
[21] |
[0885-6125] J. M. Tomczak and M. Zie.ba, Probabilistic combination of classification rules and its application to medical diagnosis, Mach. Learn., 101 (2015), 105-135.
doi: 10.1007/s10994-015-5508-x. |
[22] |
N. Verbiest, E. Ramentol, C. Cornelis and F. Herrera,
Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection, Applied Soft Computing, 22 (2014), 511-517.
doi: 10.1016/j.asoc.2014.05.023. |
[23] |
R. F. Xu, T. Chen, Y. Q. Xia, Q. Lu, B. Liu and X. Wang,
Word embedding composition for data imbalances in sentiment and emotion classification, Cognitive Computation, 7 (2015), 226-240.
doi: 10.1007/s12559-015-9319-y. |
[24] |
T. Yu, J. Debenham, T. Jan and S. Simoff,
Combine vector quantization and support vector machine for imbalanced datasets, Artificial Intelligence in Theory and Practice, 217 (2012), 81-88.
doi: 10.1007/978-0-387-34747-9_9. |
[25] |
Y. T. Xu, Q. Wang, X. Y. Pang and Y. Tian,
Maximum margin of twin spheres machine with pinball loss for imbalanced data classification, Applied Intelligence, 48 (2018), 23-34.
doi: 10.1007/s10489-017-0961-9. |




Predicted Positive | Predicted Negative | |
Positive | TP | FN |
Negative | FP | TN |
Predicted Positive | Predicted Negative | |
Positive | TP | FN |
Negative | FP | TN |
Data set | Methods | std of |
std of |
Time(s) | ||
AR1:800 IR 1:3 |
RUS-SVM | 0.5414 | 0.3175 | 0.3838 | 0.3258 | |
ROS-SVM | 0.8886 | 0.0446 | 0.7914 | 0.0783 | 4.9408 | |
SMOTE-SVM | 0.6453 | 0.1181 | 0.429 | 0.1421 | 8.752 | |
borderline-SMOTE1-SVM | 0.846 | 0.0652 | 0.7195 | 0.1095 | 5.7484 | |
borderline-SMOTE2-SVM | 0.595 | 0.1774 | 0.3823 | 0.2126 | 6.378 | |
MWMOTE-SVM | 0.6982 | 0.0526 | 0.49 | 0.072 | 10.9427 | |
WSMOTE-QSSVM | 4.0263 | |||||
AR1:2200 IR 1:10 |
RUS-SVM | 0.516 | 0.2291 | 0.3135 | 0.203 | |
ROS-SVM | 0.8508 | 0.0604 | 0.7271 | 0.0985 | 52.8877 | |
SMOTE-SVM | 0.4311 | 0.1005 | 0.1949 | 0.0874 | 127.6243 | |
borderline-SMOTE1-SVM | 0.7897 | 0.0479 | 0.6257 | 0.0764 | 104.4459 | |
borderline-SMOTE2-SVM | 0.5014 | 0.1418 | 0.2695 | 0.1347 | 86.6192 | |
MWMOTE-SVM | 0.5971 | 0.0421 | 0.3581 | 93.0159 | ||
WSMOTE-QSSVM | 0.054 | 23.2509 | ||||
AR2:800 IR 1:3 |
RUS-SVM | 0.7449 | 0.2905 | 0.6309 | 0.3688 | |
ROS-SVM | 0.9295 | 0.865 | 6.7627 | |||
SMOTE-SVM | 0.6407 | 0.1499 | 0.486 | 0.4307 | 10.6513 | |
borderline-SMOTE1-SVM | 0.8778 | 0.0671 | 0.8062 | 0.7745 | 8.3038 | |
borderline-SMOTE2-SVM | 0.6218 | 0.1317 | 0.5273 | 0.4022 | 8.1676 | |
MWMOTE-SVM | 0.7123 | 0.0414 | 0.5626 | 0.5089 | 11.0469 | |
WSMOTE-QSSVM | 0.0345 | 0.0638 | 4.1132 | |||
AR2:2200 IR 1:10 |
RUS-SVM | 0.4802 | 0.2185 | 0.5771 | 0.2159 | |
ROS-SVM | 0.8855 | 0.0222 | 0.8799 | 0.039 | 53.3882 | |
SMOTE-SVM | 0.4396 | 0.1028 | 0.47996 | 0.0845 | 130.0079 | |
borderline-SMOTE1-SVM | 0.871 | 0.8628 | 101.8846 | |||
borderline-SMOTE2-SVM | 0.5126 | 0.1133 | 0.5578 | 0.1097 | 108.3143 | |
MWMOTE-SVM | 0.6314 | 0.0463 | 0.6176 | 0.0587 | 90.1415 | |
WSMOTE-QSSVM | 0.0355 | 0.0639 | 23.926 | |||
AR3:800 IR 1:3 |
RUS-SVM | 0.5859 | 0.3457 | 0.4509 | 0.3265 | |
ROS-SVM | 0.8978 | 0.8065 | 6.8082 | |||
SMOTE-SVM | 0.6942 | 0.0527 | 0.4844 | 0.0716 | 10.9369 | |
borderline-SMOTE1-SVM | 0.8735 | 0.061 | 0.7663 | 0.1038 | 8.8757 | |
borderline-SMOTE2-SVM | 0.6095 | 0.1267 | 0.3859 | 0.164 | 8.0711 | |
MWMOTE-SVM | 0.6893 | 0.0478 | 0.4772 | 0.0664 | 11.2833 | |
WSMOTE-QSSVM | 0.041 | 0.0744 | 3.7026 | |||
AR3:2200 IR 1:10 |
RUS-SVM | 0.5809 | 0.2743 | 0.4052 | 0.2942 | |
ROS-SVM | 0.8788 | 0.055 | 0.775 | 0.0965 | 50.4581 | |
SMOTE-SVM | 0.4874 | 0.0875 | 0.2445 | 0.0847 | 125.7192 | |
borderline-SMOTE1-SVM | 0.8586 | 0.7379 | 0.0485 | 113.3755 | ||
borderline-SMOTE2-SVM | 0.5892 | 0.0387 | 0.3485 | 82.4204 | ||
MWMOTE-SVM | 0.6045 | 0.0525 | 0.3679 | 0.0621 | 90.1298 | |
WSMOTE-QSSVM | 0.051 | 0.0896 | 22.8422 |
Data set | Methods | std of |
std of |
Time(s) | ||
AR1:800 IR 1:3 |
RUS-SVM | 0.5414 | 0.3175 | 0.3838 | 0.3258 | |
ROS-SVM | 0.8886 | 0.0446 | 0.7914 | 0.0783 | 4.9408 | |
SMOTE-SVM | 0.6453 | 0.1181 | 0.429 | 0.1421 | 8.752 | |
borderline-SMOTE1-SVM | 0.846 | 0.0652 | 0.7195 | 0.1095 | 5.7484 | |
borderline-SMOTE2-SVM | 0.595 | 0.1774 | 0.3823 | 0.2126 | 6.378 | |
MWMOTE-SVM | 0.6982 | 0.0526 | 0.49 | 0.072 | 10.9427 | |
WSMOTE-QSSVM | 4.0263 | |||||
AR1:2200 IR 1:10 |
RUS-SVM | 0.516 | 0.2291 | 0.3135 | 0.203 | |
ROS-SVM | 0.8508 | 0.0604 | 0.7271 | 0.0985 | 52.8877 | |
SMOTE-SVM | 0.4311 | 0.1005 | 0.1949 | 0.0874 | 127.6243 | |
borderline-SMOTE1-SVM | 0.7897 | 0.0479 | 0.6257 | 0.0764 | 104.4459 | |
borderline-SMOTE2-SVM | 0.5014 | 0.1418 | 0.2695 | 0.1347 | 86.6192 | |
MWMOTE-SVM | 0.5971 | 0.0421 | 0.3581 | 93.0159 | ||
WSMOTE-QSSVM | 0.054 | 23.2509 | ||||
AR2:800 IR 1:3 |
RUS-SVM | 0.7449 | 0.2905 | 0.6309 | 0.3688 | |
ROS-SVM | 0.9295 | 0.865 | 6.7627 | |||
SMOTE-SVM | 0.6407 | 0.1499 | 0.486 | 0.4307 | 10.6513 | |
borderline-SMOTE1-SVM | 0.8778 | 0.0671 | 0.8062 | 0.7745 | 8.3038 | |
borderline-SMOTE2-SVM | 0.6218 | 0.1317 | 0.5273 | 0.4022 | 8.1676 | |
MWMOTE-SVM | 0.7123 | 0.0414 | 0.5626 | 0.5089 | 11.0469 | |
WSMOTE-QSSVM | 0.0345 | 0.0638 | 4.1132 | |||
AR2:2200 IR 1:10 |
RUS-SVM | 0.4802 | 0.2185 | 0.5771 | 0.2159 | |
ROS-SVM | 0.8855 | 0.0222 | 0.8799 | 0.039 | 53.3882 | |
SMOTE-SVM | 0.4396 | 0.1028 | 0.47996 | 0.0845 | 130.0079 | |
borderline-SMOTE1-SVM | 0.871 | 0.8628 | 101.8846 | |||
borderline-SMOTE2-SVM | 0.5126 | 0.1133 | 0.5578 | 0.1097 | 108.3143 | |
MWMOTE-SVM | 0.6314 | 0.0463 | 0.6176 | 0.0587 | 90.1415 | |
WSMOTE-QSSVM | 0.0355 | 0.0639 | 23.926 | |||
AR3:800 IR 1:3 |
RUS-SVM | 0.5859 | 0.3457 | 0.4509 | 0.3265 | |
ROS-SVM | 0.8978 | 0.8065 | 6.8082 | |||
SMOTE-SVM | 0.6942 | 0.0527 | 0.4844 | 0.0716 | 10.9369 | |
borderline-SMOTE1-SVM | 0.8735 | 0.061 | 0.7663 | 0.1038 | 8.8757 | |
borderline-SMOTE2-SVM | 0.6095 | 0.1267 | 0.3859 | 0.164 | 8.0711 | |
MWMOTE-SVM | 0.6893 | 0.0478 | 0.4772 | 0.0664 | 11.2833 | |
WSMOTE-QSSVM | 0.041 | 0.0744 | 3.7026 | |||
AR3:2200 IR 1:10 |
RUS-SVM | 0.5809 | 0.2743 | 0.4052 | 0.2942 | |
ROS-SVM | 0.8788 | 0.055 | 0.775 | 0.0965 | 50.4581 | |
SMOTE-SVM | 0.4874 | 0.0875 | 0.2445 | 0.0847 | 125.7192 | |
borderline-SMOTE1-SVM | 0.8586 | 0.7379 | 0.0485 | 113.3755 | ||
borderline-SMOTE2-SVM | 0.5892 | 0.0387 | 0.3485 | 82.4204 | ||
MWMOTE-SVM | 0.6045 | 0.0525 | 0.3679 | 0.0621 | 90.1298 | |
WSMOTE-QSSVM | 0.051 | 0.0896 | 22.8422 |
Mislabeled level(%) | Indicator | RUS-SVM | ROS-SVM | SMOTE-SVM | borderline-SMOTE1-SVM | borderline-SMOTE2-SVM | MWMOTE-SVM | WSMOTE-QSSVM |
10 | 0.8552 | 0.8325 | 0.573 | 0.8716 | 0.602 | 0.652 | ||
0.9245 | 0.912 | 0.7457 | 0.9332 | 0.767 | 0.803 | |||
15 | 0.8343 | 0.6416 | 0.8272 | 0.4717 | 0.6065 | 0.8489 | ||
0.9127 | 0.8005 | 0.9091 | 0.6707 | 0.7781 | 0.921 | |||
20 | 0.4509 | 0.8065 | 0.4844 | 0.7663 | 0.3859 | 0.4772 | ||
0.5859 | 0.8978 | 0.6942 | 0.8735 | 0.6095 | 0.6893 | |||
25 | 0.2005 | 0.7544 | 0.3944 | 0.6254 | 0.3238 | 0.4363 | ||
0.2835 | 0.8681 | 0.6213 | 0.7874 | 0.5615 | 0.6595 | |||
30 | 0.0314 | 0.7754 | 0.4056 | 0.5259 | 0.1855 | 0.3721 | ||
0.1076 | 0.8787 | 0.6346 | 0.7229 | 0.4216 | 0.6067 |
Mislabeled level(%) | Indicator | RUS-SVM | ROS-SVM | SMOTE-SVM | borderline-SMOTE1-SVM | borderline-SMOTE2-SVM | MWMOTE-SVM | WSMOTE-QSSVM |
10 | 0.8552 | 0.8325 | 0.573 | 0.8716 | 0.602 | 0.652 | ||
0.9245 | 0.912 | 0.7457 | 0.9332 | 0.767 | 0.803 | |||
15 | 0.8343 | 0.6416 | 0.8272 | 0.4717 | 0.6065 | 0.8489 | ||
0.9127 | 0.8005 | 0.9091 | 0.6707 | 0.7781 | 0.921 | |||
20 | 0.4509 | 0.8065 | 0.4844 | 0.7663 | 0.3859 | 0.4772 | ||
0.5859 | 0.8978 | 0.6942 | 0.8735 | 0.6095 | 0.6893 | |||
25 | 0.2005 | 0.7544 | 0.3944 | 0.6254 | 0.3238 | 0.4363 | ||
0.2835 | 0.8681 | 0.6213 | 0.7874 | 0.5615 | 0.6595 | |||
30 | 0.0314 | 0.7754 | 0.4056 | 0.5259 | 0.1855 | 0.3721 | ||
0.1076 | 0.8787 | 0.6346 | 0.7229 | 0.4216 | 0.6067 |
Datasets | Data size | Features | Imbalanced ratio |
Pima | 214 | 9 | 1.82 |
Glass4 | 214 | 10 | 1.82 |
Glass5 | 214 | 10 | 1.82 |
Haberman | 306 | 4 | 2.78 |
Vehicle1 | 846 | 19 | 2.9 |
Glass0123vs456 | 214 | 10 | 3.2 |
Abalone21vs8 | 581 | 9 | 40.5 |
Vowel0 | 988 | 14 | 9.98 |
Shuttlec0vsc4 | 1829 | 10 | 13.87 |
Pageblocks13vs4 | 472 | 11 | 15.86 |
Glass016vs5 | 184 | 10 | 19.44 |
Abalone918 | 731 | 9 | 16.4 |
Newthyroid2 | 215 | 6 | 5.14 |
Yeast4 | 1484 | 9 | 28.1 |
Yeast6 | 1484 | 9 | 41.4 |
Datasets | Data size | Features | Imbalanced ratio |
Pima | 214 | 9 | 1.82 |
Glass4 | 214 | 10 | 1.82 |
Glass5 | 214 | 10 | 1.82 |
Haberman | 306 | 4 | 2.78 |
Vehicle1 | 846 | 19 | 2.9 |
Glass0123vs456 | 214 | 10 | 3.2 |
Abalone21vs8 | 581 | 9 | 40.5 |
Vowel0 | 988 | 14 | 9.98 |
Shuttlec0vsc4 | 1829 | 10 | 13.87 |
Pageblocks13vs4 | 472 | 11 | 15.86 |
Glass016vs5 | 184 | 10 | 19.44 |
Abalone918 | 731 | 9 | 16.4 |
Newthyroid2 | 215 | 6 | 5.14 |
Yeast4 | 1484 | 9 | 28.1 |
Yeast6 | 1484 | 9 | 41.4 |
Datasets Name | RUS-SVM mean/std/rank time(s) | ROS-SVM mean/std/rank time(s) | SMOTE-SVM mean/std/rank time(s) | borderline-SMOTE1-SVM mean/std/rank time(s) | borderline-SMOTE2-SVM mean/std/rank time(s) | MWMOTE-SVM mean/std /rank time(s) | WSMOTE-QSSVM mean/std/rank time(s) |
Pima | 0.2726 /0.1996/7 | 0.6292/0.0446/2 | 0.5802/0.0802/4 | 0.6211/0.0628/3 | 0.3459/0.1442/6 | 0.5681/0.0529/5 | 0.6521/0.0505/1 |
16.3335 | 8.2276 | 16.6804 | 18.3543 | 18.381 | 18.414 | 11.0034 | |
Vowel0 | 0.4675/0.3726/7 | 0.918/0.0845/2 | 0.8054/0.042/4 | 0.8536/0.0759/3 | 0.7976/0.0671/5 | 0.7594/0.0529/6 | 0.9199/0.0583/1 |
14.1906 | 4.3252 | 33.0654 | 31.7508 | 31.5846 | 25.7455 | 25.7865 | |
Glass0123vs456 | 0.7099/0.1468/6 | 0.7874/0.0861/4 | 0.8037/0.0786/2 | 0.8291/0.0837/1 | 0.7418/0.1339/5 | 0.7048/0.1415/7 | 0.7921/0.0892/3 |
0.6951 | 0.3932 | 1.0297 | 1.3301 | 1.2478 | 1.1803 | 3.056 | |
Haberman | 0.3932/0.0794/5 | 0.2286/0.1846/7 | 0.4457/0.0944/4 | 0.4687/0.1048/3 | 0.3468/0.1334/6 | 0.5168/0.0544/2 | 0.6394/0.1057/1 |
1.0481 | 0.5925 | 78.2541 | 1.7105 | 22.0941 | 2.8829 | 1.2026 | |
Vehicle1 | 0.2926/0.2722/6 | 0.6873/0.1027/2 | 0.38/0.1016/5 | 0.61/0.0604/3 | 0.2131/0.144/7 | 0.479/0.0467/4 | 0.7254/0.041/1 |
14.1348 | 7.3443 | 23.71 | 23.79 | 24.2277 | 20.6886 | 47.0032 | |
Shuttlec0vsc4 | 0.7955/0.1095/6 | 0.9939/0.0098/1 | 0.7633/0.0287/7 | 0.8513/0.045/5 | 0.8527/0.0454/4 | 0.9238/0.0273/3 | 0.9819/0.0131/2 |
15.0486 | 75.75541 | 150.7936 | 145.2165 | 147.0763 | 78.9499 | 125.5474 | |
Pageblocks13vs4 | 0.6375/0.1509/3 | 0.5887/0.2618/5 | 0.608/0.1809/4 | 0.8848/0.0649/2 | 0.5607/0.2308/7 | 0.5771/0.1332/6 | 0.9081/0.0699/1 |
1.8912 | 5.4061 | 11.0931 | 9.9519 | 10.4541 | 20.2431 | 22.9759 | |
Abalone21vs8 | 0.3995/0.2119/3 | 0.3773/0.4158/4 | 0.1151/0.247/7 | 0.5252/0.3741/2 | 0.2321/0.2448/5 | 0.1937/0.2501/6 | 0.6873/0.2725/1 |
1.0082 | 3.846 | 9.8971 | 8.5385 | 8.5024 | 8.7712 | 6.9418 | |
Yeast6 | 0.3806/0.2218/5 | 0.3719/0.2875/6 | 0.4615/0.1965/4 | 0.5946/0.1959/3 | 0.3188/0.2381/7 | 0.6378/0.1015/2 | 0.7146/0.1159/1 |
4.6745 | 27.0141 | 60.5981 | 60.6621 | 62.1266 | 40.8791 | 20.2801 | |
Abalone918 | 0.3443/0.2325/3 | 0.1556/0.2053/6 | 0.2063/0.2299/5 | 0.3263/0.252/4 | 0.0348/0.1102/7 | 0.3947/0.1589/2 | 0.6533/0.0978/1 |
1.6203 | 6.1747 | 14.5602 | 10.559 | 5.9857 | 13.8744 | 8.594 | |
Newthyroid2 | 0.6419/0.1922/5 | 0.7352/0.1259/4 | 0.5555/0.2352/6 | 0.8474/0.0705/2 | 0.555/0.2077/7 | 0.7676/0.1135/3 | 0.8774/0.096/1 |
0.3228 | 0.6046 | 1.1284 | 0.8065 | 0.7775 | 0.8403 | 1.4356 | |
Glass016vs5 | 0.5164/0.2742/3 | 0.2746/0.3546/7 | 0.5129/0.2897/4 | 0.6011/0.3381/2 | 0.4386/0.389/5 | 0.3389/0.3664/6 | 0.7132/0.1589/1 |
0.1869 | 0.5241 | 1.175 | 1.1612 | 1.1598 | 0.5781 | 3.3859 | |
Glass5 | 0.5388/0.2548/2 | 0.4234/0.3644/7 | 0.4735/0.3416/6 | 0.5215/0.3736/3 | 0.4737/0.3272/5 | 0.4896/0.35/4 | 0.8439/0.1328/1 |
0.2077 | 0.6566 | 1.5191 | 1.3504 | 1.355 | 0.778 | 4.0237 | |
Yeast4 | 0.1843/0.0748/6 | 0.2065/0.2272/5 | 0.3751/0.2332/4 | 0.5555/0.0802/3 | 0.0627/0.1323/7 | 0.6059/0.1153/1 | 0.5941/0.1145/2 |
9.0832 | 45.4406 | 161.9439 | 78.493 | 81.4676 | 78.5899 | 35.4481 | |
Glass4 | 0.431/0.2546/3 | 0.1147/0.2419/7 | 0.4076/0.3698/4 | 0.6286/0.2719/2 | 0.2663/0.3521/6 | 0.378/0.2713/5 | 0.7867/0.1263/1 |
0.2045 | 0.7664 | 1.4998 | 1.3387 | 1.3477 | 1.4321 | 3.4769 | |
Average Rank | 4.7 | 4.6 | 4.7 | 2.7 | 5.9 | 4.1 | 1.3 |
Final Rank | 6 | 4 | 5 | 2 | 7 | 3 | 1 |
Datasets Name | RUS-SVM mean/std/rank time(s) | ROS-SVM mean/std/rank time(s) | SMOTE-SVM mean/std/rank time(s) | borderline-SMOTE1-SVM mean/std/rank time(s) | borderline-SMOTE2-SVM mean/std/rank time(s) | MWMOTE-SVM mean/std /rank time(s) | WSMOTE-QSSVM mean/std/rank time(s) |
Pima | 0.2726 /0.1996/7 | 0.6292/0.0446/2 | 0.5802/0.0802/4 | 0.6211/0.0628/3 | 0.3459/0.1442/6 | 0.5681/0.0529/5 | 0.6521/0.0505/1 |
16.3335 | 8.2276 | 16.6804 | 18.3543 | 18.381 | 18.414 | 11.0034 | |
Vowel0 | 0.4675/0.3726/7 | 0.918/0.0845/2 | 0.8054/0.042/4 | 0.8536/0.0759/3 | 0.7976/0.0671/5 | 0.7594/0.0529/6 | 0.9199/0.0583/1 |
14.1906 | 4.3252 | 33.0654 | 31.7508 | 31.5846 | 25.7455 | 25.7865 | |
Glass0123vs456 | 0.7099/0.1468/6 | 0.7874/0.0861/4 | 0.8037/0.0786/2 | 0.8291/0.0837/1 | 0.7418/0.1339/5 | 0.7048/0.1415/7 | 0.7921/0.0892/3 |
0.6951 | 0.3932 | 1.0297 | 1.3301 | 1.2478 | 1.1803 | 3.056 | |
Haberman | 0.3932/0.0794/5 | 0.2286/0.1846/7 | 0.4457/0.0944/4 | 0.4687/0.1048/3 | 0.3468/0.1334/6 | 0.5168/0.0544/2 | 0.6394/0.1057/1 |
1.0481 | 0.5925 | 78.2541 | 1.7105 | 22.0941 | 2.8829 | 1.2026 | |
Vehicle1 | 0.2926/0.2722/6 | 0.6873/0.1027/2 | 0.38/0.1016/5 | 0.61/0.0604/3 | 0.2131/0.144/7 | 0.479/0.0467/4 | 0.7254/0.041/1 |
14.1348 | 7.3443 | 23.71 | 23.79 | 24.2277 | 20.6886 | 47.0032 | |
Shuttlec0vsc4 | 0.7955/0.1095/6 | 0.9939/0.0098/1 | 0.7633/0.0287/7 | 0.8513/0.045/5 | 0.8527/0.0454/4 | 0.9238/0.0273/3 | 0.9819/0.0131/2 |
15.0486 | 75.75541 | 150.7936 | 145.2165 | 147.0763 | 78.9499 | 125.5474 | |
Pageblocks13vs4 | 0.6375/0.1509/3 | 0.5887/0.2618/5 | 0.608/0.1809/4 | 0.8848/0.0649/2 | 0.5607/0.2308/7 | 0.5771/0.1332/6 | 0.9081/0.0699/1 |
1.8912 | 5.4061 | 11.0931 | 9.9519 | 10.4541 | 20.2431 | 22.9759 | |
Abalone21vs8 | 0.3995/0.2119/3 | 0.3773/0.4158/4 | 0.1151/0.247/7 | 0.5252/0.3741/2 | 0.2321/0.2448/5 | 0.1937/0.2501/6 | 0.6873/0.2725/1 |
1.0082 | 3.846 | 9.8971 | 8.5385 | 8.5024 | 8.7712 | 6.9418 | |
Yeast6 | 0.3806/0.2218/5 | 0.3719/0.2875/6 | 0.4615/0.1965/4 | 0.5946/0.1959/3 | 0.3188/0.2381/7 | 0.6378/0.1015/2 | 0.7146/0.1159/1 |
4.6745 | 27.0141 | 60.5981 | 60.6621 | 62.1266 | 40.8791 | 20.2801 | |
Abalone918 | 0.3443/0.2325/3 | 0.1556/0.2053/6 | 0.2063/0.2299/5 | 0.3263/0.252/4 | 0.0348/0.1102/7 | 0.3947/0.1589/2 | 0.6533/0.0978/1 |
1.6203 | 6.1747 | 14.5602 | 10.559 | 5.9857 | 13.8744 | 8.594 | |
Newthyroid2 | 0.6419/0.1922/5 | 0.7352/0.1259/4 | 0.5555/0.2352/6 | 0.8474/0.0705/2 | 0.555/0.2077/7 | 0.7676/0.1135/3 | 0.8774/0.096/1 |
0.3228 | 0.6046 | 1.1284 | 0.8065 | 0.7775 | 0.8403 | 1.4356 | |
Glass016vs5 | 0.5164/0.2742/3 | 0.2746/0.3546/7 | 0.5129/0.2897/4 | 0.6011/0.3381/2 | 0.4386/0.389/5 | 0.3389/0.3664/6 | 0.7132/0.1589/1 |
0.1869 | 0.5241 | 1.175 | 1.1612 | 1.1598 | 0.5781 | 3.3859 | |
Glass5 | 0.5388/0.2548/2 | 0.4234/0.3644/7 | 0.4735/0.3416/6 | 0.5215/0.3736/3 | 0.4737/0.3272/5 | 0.4896/0.35/4 | 0.8439/0.1328/1 |
0.2077 | 0.6566 | 1.5191 | 1.3504 | 1.355 | 0.778 | 4.0237 | |
Yeast4 | 0.1843/0.0748/6 | 0.2065/0.2272/5 | 0.3751/0.2332/4 | 0.5555/0.0802/3 | 0.0627/0.1323/7 | 0.6059/0.1153/1 | 0.5941/0.1145/2 |
9.0832 | 45.4406 | 161.9439 | 78.493 | 81.4676 | 78.5899 | 35.4481 | |
Glass4 | 0.431/0.2546/3 | 0.1147/0.2419/7 | 0.4076/0.3698/4 | 0.6286/0.2719/2 | 0.2663/0.3521/6 | 0.378/0.2713/5 | 0.7867/0.1263/1 |
0.2045 | 0.7664 | 1.4998 | 1.3387 | 1.3477 | 1.4321 | 3.4769 | |
Average Rank | 4.7 | 4.6 | 4.7 | 2.7 | 5.9 | 4.1 | 1.3 |
Final Rank | 6 | 4 | 5 | 2 | 7 | 3 | 1 |
Datasets Name | RUS-SVM mean/std/rank time(s) | ROS-SVM mean/std/rank time(s) | SMOTE-SVM mean/std/rank time(s) | borderline-SMOTE1-SVM mean/std /rank time(s) | borderline-SMOTE2-SVM mean/std/rank time(s) | MWMOTE-SVM mean/std/rank time(s) | WSMOTE-QSSVM mean/std/rank time(s) |
Pima | 0.1102/0.0913/7 | 0.3977/0.0534/2 | 0.3424/0.0928/4 | 0.3893/0.074/3 | 0.1384/0.0965/6 | 0.3252/0.0609/5 | |
16.3335 | 8.2276 | 16.6804 | 18.3543 | 18.381 | 18.414 | ||
Vowel0 | 0.3435/0.3226/7 | 0.8491/0.1441/2 | 0.6502/0.0677/4 | 0.7338/0.1277/3 | 0.6402/0.1017/5 | 0.5792/0.0777/6 | |
14.1906 | 33.0654 | 31.7508 | 31.5846 | 25.7455 | 25.7865 | ||
Glass0123vs456 | 0.5233/0.204/6 | 0.6267/0.1316/4 | 0.6515/0.1289/2 | 0.5664/0.1878/5 | 0.5148/0.1721/7 | 0.6345/0.1353/3 | |
0.6951 | 1.0297 | 1.3301 | 1.2478 | 1.1803 | 3.056 | ||
Haberman | 0.1603/0.0604/5 | 0.0829/0.0931/7 | 0.2067/0.0798/4 | 0.2296/0.0854/3 | 0.1363/0.0655/6 | 0.2697/0.0573/2 | |
1.0481 | 78.2541 | 1.7105 | 22.0941 | 2.8829 | 1.2026 | ||
Vehicle1 | 0.1523/0.1936/6 | 0.4819/0.1337/2 | 0.1537/0.0884/5 | 0.3753/0.0741/3 | 0.0641/0.0603/7 | 0.2314/0.0439/4 | |
14.1348 | 23.71 | 23.79 | 24.2277 | 20.6886 | 47.0032 | ||
Shuttlec0vsc4 | 0.6436/0.1837/6 | 0.5834/0.044/7 | 0.7265/0.0761/5 | 0.729/0.0775/4 | 0.8541/0.0516/3 | 0.9643/0.0257/2 | |
75.75541 | 150.7936 | 145.2165 | 147.0763 | 78.9499 | 125.5474 | ||
Pageblocks13vs4 | 0.427/0.1861/3 | 0.4082/0.263/4 | 0.3991/0.2052/5 | 0.7867/0.1124/2 | 0.3624/0.1935/6 | 0.3491/0.155/7 | |
5.4061 | 11.0931 | 9.9519 | 10.4541 | 20.2431 | 22.9759 | ||
Abalone21vs8 | 0.2/0.1464/5 | 0.2979/0.3654/3 | 0.0681/0.1533/7 | 0.4018/0.3065/2 | 0.2526/0.2665/4 | 0.0938/0.1212/6 | |
3.846 | 9.8971 | 8.5385 | 8.5024 | 8.7712 | 6.9418 | ||
Yeast6 | 0.1892/0.1707/6 | 0.2127/0.2034/5 | 0.2477/0.144/4 | 0.3881/0.232/3 | 0.1527/0.1385/7 | 0.4161/0.1298/2 | |
27.0141 | 60.5981 | 60.6621 | 62.1266 | 40.8791 | 20.2801 | ||
Abalone918 | 0.1672/0.1431/3 | 0.0621/0.0878/6 | 0.0901/0.1128/5 | 0.1637/0.1563/4 | 0.0121/0.0384/7 | 0.1785/0.09/2 | |
6.1747 | 14.5602 | 10.559 | 5.9857 | 13.8744 | 8.594 | ||
Newthyroid2 | 0.4452/0.2622/5 | 0.5548/0.1858/4 | 0.3583/0.2065/6 | 0.7226/0.1202/2 | 0.3468/0.1504/7 | 0.6008/0.1692/3 | |
0.6046 | 1.1284 | 0.8065 | 0.7775 | 0.8403 | 1.4356 | ||
Glass016vs5 | 0.3343/0.2469/4 | 0.1886/0.2437/7 | 0.3386/0.2297/3 | 0.4643/0.3076/2 | 0.3286/0.3228/5 | 0.2357/0.2752/6 | |
0.5241 | 1.175 | 1.1612 | 1.1598 | 0.5781 | 3.3859 | ||
Glass5 | 0.3488/0.2479/4 | 0.2988/0.2572/7 | 0.3293/0.2687/5 | 0.3976/0.3177/2 | 0.3207/0.2221/6 | 0.35/0.2774/3 | |
0.6566 | 1.5191 | 1.3504 | 1.355 | 0.778 | 4.0237 | ||
Yeast4 | 0.039/0.0305/6 | 0.0891/0.1087/5 | 0.1896/0.1526/4 | 0.3144/0.0918/3 | 0.0197/0.0415/7 | 0.3647/0.1404/2 | |
45.4406 | 161.9439 | 78.493 | 81.4676 | 78.5899 | 35.4481 | ||
Glass4 | 0.2442/0.2012/4 | 0.0658/0.1388/7 | 0.2892/0.2938/3 | 0.4617/0.2738/2 | 0.1825/0.2566/6 | 0.2092/0.1679/5 | |
0.7664 | 1.4998 | 1.3387 | 1.3477 | 1.4321 | 3.4769 | ||
Datasets Name | RUS-SVM mean/std/rank time(s) | ROS-SVM mean/std/rank time(s) | SMOTE-SVM mean/std/rank time(s) | borderline-SMOTE1-SVM mean/std /rank time(s) | borderline-SMOTE2-SVM mean/std/rank time(s) | MWMOTE-SVM mean/std/rank time(s) | WSMOTE-QSSVM mean/std/rank time(s) |
Pima | 0.1102/0.0913/7 | 0.3977/0.0534/2 | 0.3424/0.0928/4 | 0.3893/0.074/3 | 0.1384/0.0965/6 | 0.3252/0.0609/5 | |
16.3335 | 8.2276 | 16.6804 | 18.3543 | 18.381 | 18.414 | ||
Vowel0 | 0.3435/0.3226/7 | 0.8491/0.1441/2 | 0.6502/0.0677/4 | 0.7338/0.1277/3 | 0.6402/0.1017/5 | 0.5792/0.0777/6 | |
14.1906 | 33.0654 | 31.7508 | 31.5846 | 25.7455 | 25.7865 | ||
Glass0123vs456 | 0.5233/0.204/6 | 0.6267/0.1316/4 | 0.6515/0.1289/2 | 0.5664/0.1878/5 | 0.5148/0.1721/7 | 0.6345/0.1353/3 | |
0.6951 | 1.0297 | 1.3301 | 1.2478 | 1.1803 | 3.056 | ||
Haberman | 0.1603/0.0604/5 | 0.0829/0.0931/7 | 0.2067/0.0798/4 | 0.2296/0.0854/3 | 0.1363/0.0655/6 | 0.2697/0.0573/2 | |
1.0481 | 78.2541 | 1.7105 | 22.0941 | 2.8829 | 1.2026 | ||
Vehicle1 | 0.1523/0.1936/6 | 0.4819/0.1337/2 | 0.1537/0.0884/5 | 0.3753/0.0741/3 | 0.0641/0.0603/7 | 0.2314/0.0439/4 | |
14.1348 | 23.71 | 23.79 | 24.2277 | 20.6886 | 47.0032 | ||
Shuttlec0vsc4 | 0.6436/0.1837/6 | 0.5834/0.044/7 | 0.7265/0.0761/5 | 0.729/0.0775/4 | 0.8541/0.0516/3 | 0.9643/0.0257/2 | |
75.75541 | 150.7936 | 145.2165 | 147.0763 | 78.9499 | 125.5474 | ||
Pageblocks13vs4 | 0.427/0.1861/3 | 0.4082/0.263/4 | 0.3991/0.2052/5 | 0.7867/0.1124/2 | 0.3624/0.1935/6 | 0.3491/0.155/7 | |
5.4061 | 11.0931 | 9.9519 | 10.4541 | 20.2431 | 22.9759 | ||
Abalone21vs8 | 0.2/0.1464/5 | 0.2979/0.3654/3 | 0.0681/0.1533/7 | 0.4018/0.3065/2 | 0.2526/0.2665/4 | 0.0938/0.1212/6 | |
3.846 | 9.8971 | 8.5385 | 8.5024 | 8.7712 | 6.9418 | ||
Yeast6 | 0.1892/0.1707/6 | 0.2127/0.2034/5 | 0.2477/0.144/4 | 0.3881/0.232/3 | 0.1527/0.1385/7 | 0.4161/0.1298/2 | |
27.0141 | 60.5981 | 60.6621 | 62.1266 | 40.8791 | 20.2801 | ||
Abalone918 | 0.1672/0.1431/3 | 0.0621/0.0878/6 | 0.0901/0.1128/5 | 0.1637/0.1563/4 | 0.0121/0.0384/7 | 0.1785/0.09/2 | |
6.1747 | 14.5602 | 10.559 | 5.9857 | 13.8744 | 8.594 | ||
Newthyroid2 | 0.4452/0.2622/5 | 0.5548/0.1858/4 | 0.3583/0.2065/6 | 0.7226/0.1202/2 | 0.3468/0.1504/7 | 0.6008/0.1692/3 | |
0.6046 | 1.1284 | 0.8065 | 0.7775 | 0.8403 | 1.4356 | ||
Glass016vs5 | 0.3343/0.2469/4 | 0.1886/0.2437/7 | 0.3386/0.2297/3 | 0.4643/0.3076/2 | 0.3286/0.3228/5 | 0.2357/0.2752/6 | |
0.5241 | 1.175 | 1.1612 | 1.1598 | 0.5781 | 3.3859 | ||
Glass5 | 0.3488/0.2479/4 | 0.2988/0.2572/7 | 0.3293/0.2687/5 | 0.3976/0.3177/2 | 0.3207/0.2221/6 | 0.35/0.2774/3 | |
0.6566 | 1.5191 | 1.3504 | 1.355 | 0.778 | 4.0237 | ||
Yeast4 | 0.039/0.0305/6 | 0.0891/0.1087/5 | 0.1896/0.1526/4 | 0.3144/0.0918/3 | 0.0197/0.0415/7 | 0.3647/0.1404/2 | |
45.4406 | 161.9439 | 78.493 | 81.4676 | 78.5899 | 35.4481 | ||
Glass4 | 0.2442/0.2012/4 | 0.0658/0.1388/7 | 0.2892/0.2938/3 | 0.4617/0.2738/2 | 0.1825/0.2566/6 | 0.2092/0.1679/5 | |
0.7664 | 1.4998 | 1.3387 | 1.3477 | 1.4321 | 3.4769 | ||
Datasets | RUS-SVM | ROS-SVM | SMOTE-SVM | borderline-SMOTE1-SVM | borderline-SMOTE2-SVM | MWMOTE-SVM | WSMOTE-QSSVM |
Pima | 0.1918 | 0.5924 | 0.5728 | 0.6045 | 0.2423 | 0.5608 | |
Vowel0 | 0.4398 | 0.912 | 0.8038 | 0.8487 | 0.7864 | 0.7563 | |
Glass0123vs456 | 0.6668 | 0.7676 | 0.7948 | 0.713 | 0.6918 | 0.7789 | |
Haberman | 0.2898 | 0.1472 | 0.4129 | 0.4181 | 0.2635 | 0.5074 | |
Vehicle1 | 0.2354 | 0.6584 | 0.2784 | 0.5787 | 0.1197 | 0.4042 | 0.7231 |
Shuttlec0vsc4 | 0.7749 | 0.7578 | 0.85 | 0.8503 | 0.9214 | 0.9817 | |
Pageblocks13vs4 | 0.5789 | 0.5362 | 0.5798 | 0.8831 | 0.5212 | 0.5547 | |
Abalone21vs8 | 0.3178 | 0.3591 | 0.1122 | 0.5162 | 0.4873 | 0.1809 | |
Yeast6 | 0.3013 | 0.3116 | 0.4046 | 0.545 | 0.2474 | 0.6243 | |
Abalone918 | 0.2748 | 0.1066 | 0.1785 | 0.2729 | 0.0221 | 0.3497 | |
Newthyroid2 | 0.5924 | 0.6984 | 0.5332 | 0.8422 | 0.5072 | 0.7563 | |
Glass016vs5 | 0.4586 | 0.2613 | 0.5045 | 0.5878 | 0.423 | 0.331 | |
Glass5 | 0.4732 | 0.3994 | 0.465 | 0.5064 | 0.4526 | 0.479 | |
Yeast4 | 0.0754 | 0.1489 | 0.3238 | 0.5015 | 0.0363 | 0.5632 | |
Glass4 | 0.3774 | 0.0997 | 0.3971 | 0.6028 | 0.2517 | 0.3611 |
Datasets | RUS-SVM | ROS-SVM | SMOTE-SVM | borderline-SMOTE1-SVM | borderline-SMOTE2-SVM | MWMOTE-SVM | WSMOTE-QSSVM |
Pima | 0.1918 | 0.5924 | 0.5728 | 0.6045 | 0.2423 | 0.5608 | |
Vowel0 | 0.4398 | 0.912 | 0.8038 | 0.8487 | 0.7864 | 0.7563 | |
Glass0123vs456 | 0.6668 | 0.7676 | 0.7948 | 0.713 | 0.6918 | 0.7789 | |
Haberman | 0.2898 | 0.1472 | 0.4129 | 0.4181 | 0.2635 | 0.5074 | |
Vehicle1 | 0.2354 | 0.6584 | 0.2784 | 0.5787 | 0.1197 | 0.4042 | 0.7231 |
Shuttlec0vsc4 | 0.7749 | 0.7578 | 0.85 | 0.8503 | 0.9214 | 0.9817 | |
Pageblocks13vs4 | 0.5789 | 0.5362 | 0.5798 | 0.8831 | 0.5212 | 0.5547 | |
Abalone21vs8 | 0.3178 | 0.3591 | 0.1122 | 0.5162 | 0.4873 | 0.1809 | |
Yeast6 | 0.3013 | 0.3116 | 0.4046 | 0.545 | 0.2474 | 0.6243 | |
Abalone918 | 0.2748 | 0.1066 | 0.1785 | 0.2729 | 0.0221 | 0.3497 | |
Newthyroid2 | 0.5924 | 0.6984 | 0.5332 | 0.8422 | 0.5072 | 0.7563 | |
Glass016vs5 | 0.4586 | 0.2613 | 0.5045 | 0.5878 | 0.423 | 0.331 | |
Glass5 | 0.4732 | 0.3994 | 0.465 | 0.5064 | 0.4526 | 0.479 | |
Yeast4 | 0.0754 | 0.1489 | 0.3238 | 0.5015 | 0.0363 | 0.5632 | |
Glass4 | 0.3774 | 0.0997 | 0.3971 | 0.6028 | 0.2517 | 0.3611 |
[1] |
Jian Luo, Xueqi Yang, Ye Tian, Wenwen Yu. Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2743-2756. doi: 10.3934/jimo.2019078 |
[2] |
Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581 |
[3] |
Subrata Dasgupta. Disentangling data, information and knowledge. Big Data & Information Analytics, 2016, 1 (4) : 377-389. doi: 10.3934/bdia.2016016 |
[4] |
Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044 |
[5] |
Dung Le. Strong positivity of continuous supersolutions to parabolic equations with rough boundary data. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1521-1530. doi: 10.3934/dcds.2015.35.1521 |
[6] |
Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 |
[7] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286 |
[8] |
Giovanni Alessandrini, Eva Sincich, Sergio Vessella. Stable determination of surface impedance on a rough obstacle by far field data. Inverse Problems and Imaging, 2013, 7 (2) : 341-351. doi: 10.3934/ipi.2013.7.341 |
[9] |
Takafumi Akahori. Global solutions of the wave-Schrödinger system with rough data. Communications on Pure and Applied Analysis, 2005, 4 (2) : 209-240. doi: 10.3934/cpaa.2005.4.209 |
[10] |
Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006 |
[11] |
Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems and Imaging, 2019, 13 (2) : 285-307. doi: 10.3934/ipi.2019015 |
[12] |
Hans-Joachim Kroll, Sayed-Ghahreman Taherian, Rita Vincenti. Optimal antiblocking systems of information sets for the binary codes related to triangular graphs. Advances in Mathematics of Communications, 2022, 16 (1) : 169-183. doi: 10.3934/amc.2020107 |
[13] |
Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483 |
[14] |
Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014 |
[15] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[16] |
Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i |
[17] |
Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations and Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147 |
[18] |
Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems and Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024 |
[19] |
Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187 |
[20] |
Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]