[1]
|
R. Akbari, R. Akbari, K. Ziarati and B. Hassanizadeh, A multi-objective artificial bee colony algorithm, Swarm and Evolutionary Computation, 2 (2012), 39-52.
doi: 10.1016/j.swevo.2011.08.001.
|
[2]
|
D. W. Corne, N. R. Jerram, J. D. Knowles and M. J. Oates, PESA-Ⅱ: Region-based selection in evolutionary multi-objective optimization, Conference on Genetic and Evolutionary Computation, (2001).
|
[3]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[4]
|
J. D. Knowles and D. W. Corne, Approximating the non-dominated front using the pareto archived evolution strategy, Evolutionary Computation, 8 (2000), 149-172.
|
[5]
|
S. Liu, Y. Yan and Y. Zhou, A binary lions warm algorithm for solving 0-1 knapsack problem, Computer Engineering and Science, 41 (2019), 2079-2087.
doi: 10.3969/j.issn.1007-130X.2019.11.024.
|
[6]
|
S. J. Liu, Y. Yan and Y. Q. Zhou, A swarm intelligence algorithm-lion swarm optimization, Pattern Recognition and Artificial Intelligence, 31 (2018), 431-441.
doi: 10.16451/j.cnki.issn1003-6059.201805005.
|
[7]
|
S. Mirjalili, S. Saremi and S. M. Mirjalili, Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization, Expert Systems with Applications, 47 (2016), 106-119.
doi: 10.1016/j.eswa.2015.10.039.
|
[8]
|
S. Mirjalili, P. Jangir and S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems, Applied Intelligence, 46 (2017), 79-95.
doi: 10.1007/s10489-016-0825-8.
|
[9]
|
S. Mirjalili, P. Jangir, S. Z. Mirjalili, S. Saremi and I.N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm, Knowledge-Based Systems, 134 (2017), 50-71.
doi: 10.1016/j.knosys.2017.07.018.
|
[10]
|
N. Srinivas and K. Deb, Multiobjective optimization using non-dominated sorting in genetic algorithms, Evolutionary Computation, 2 (1994), 221-248.
|
[11]
|
Y. Wu and P. Zhang, Common-Mode (CM) Current Sensor Node Design for Distribution Grid Insulation Monitoring Framework Based on Multi-Objective Optimization, IEEE Transactions on Industrial Informatics, 17 (2021), 3836-3846.
doi: 10.1109/TII.2020.3014995.
|
[12]
|
Z. Wu, Z. Xie and C. Liu, An improved lion swarm optimization for parameters identification of photovoltaic cell models, Transactions of the Institute of Measurement and Control, 42 (2020), 1191-1203.
doi: 10.1177/0142331219887844.
|
[13]
|
C. Xie, F. Zhang, J. Lu, C. Xiao and G. Long, Multi-objective firefly algorithm based on multiply cooperative strategies, Acta Electronica Sinica, 47 (2019), 2359-2367.
doi: 10.3969/j.issn.0372-2112.2019.11.018.
|
[14]
|
J. Yang, X. Hou, H. Cui, Z. Hu and X. Mu, Improved multi-objectiive particle swarm optimzation algorithm based on integrating multiply strategies, Control and Decision, 33 (2018), 226-234.
doi: 10.13195/j.kzyjc.2016.1451.
|
[15]
|
B. Zhao and Y. Cao, A Multi-agent particle swarm optimization algorithm, Proceedings of the CSEE, 25 (2005), 3-9.
|
[16]
|
Q. Zhang, A. Zhou and S. Zhao, Multi-objective optimization test instances for the CEC 2009 special session and competition, Essex: University of Essex, 2008.
|
[17]
|
A. Zhou, Q. Zhang and G. Zhang, Multi-objective evolutionary algorithm based on mixture Gaussian models, Journal of Software, 25 (2014), 913-928.
doi: 10.13328/j.cnki.jos.004514.
|
[18]
|
E. Zitzler and L. Thiele, Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, 3 (1999), 257-271.
|
[19]
|
E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the strength pareto evolutionary algorithm, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, (2002), 95-100.
|