-
Previous Article
Study on resource allocation scheduling problem with learning factors and group technology
- JIMO Home
- This Issue
-
Next Article
Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Valuing equity-linked death benefits with a threshold expense structure under a regime-switching Lévy model
1. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
2. | School of Insurance, Shandong University of Finance and Economics, Jinan 250014, China |
In this paper, we investigate the valuation problem of equity-linked death benefits with a threshold expense structure. Specifically, a regime-switching Lévy process is used to describe the underlying asset price process, which is monitored periodically. The fees are assumed to be continuously deducted at some constant rate from the policyholder's account between the current and next monitoring times, if the account value is smaller than a pre-specified level at the current observation time point. Under the modified threshold expense structure, some explicit valuation expressions for life-contingent call options are derived by the Fourier cosine series expansion method. Numerical results demonstrate the accuracy and efficiency of our method.
References:
[1] |
S. Asmussen, Applied Probability and Queues, $2^{nd}$ edition, Springer, New York, 2003. |
[2] |
T.-H. Bae and B.-W. Ko,
On pricing equity-linked investment products with a threshold expense structure, The Korean Journal of Applied Statistics, 23 (2010), 621-633.
doi: 10.5351/KJAS.2010.23.4.621. |
[3] |
C. Bernard, M. Hardy and A. Mackay,
State-dependent fees for variable annuity guarantees, Astin Bulletin, 44 (2014), 559-585.
doi: 10.1017/asb.2014.13. |
[4] |
J. Buffington and R. Elliot,
American options with regime switching models, J. Theor. Appl. Finance, 5 (2002), 497-514.
doi: 10.1142/S0219024902001523. |
[5] |
Z. Cui, J. L. Kirkby and D. Nguyen,
Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps, Insurance Math. Econom., 74 (2017), 46-62.
doi: 10.1016/j.insmatheco.2017.02.010. |
[6] |
Ł. Delong,
Pricing and hedging of variable annuities with state-dependent fees, Insurance Math. Econom., 58 (2014), 24-33.
doi: 10.1016/j.insmatheco.2014.06.002. |
[7] |
F. Fang and C. W. Oosterlee,
A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput., 31 (2008/09), 826-848.
doi: 10.1137/080718061. |
[8] |
F. Fang and C. Oosterlee,
Pricing early-exercise and discrete barrier options by fourier-cosine series expansions, Numerische Mathematik, 114 (2009), 27-62.
doi: 10.1007/s00211-009-0252-4. |
[9] |
H. U. Gerber, E. S. W. Shiu and H. Yang,
Valuing equity-linked death benefits and other contingent options: A discounted density approach, Insurance Math. Econom., 51 (2012), 73-92.
doi: 10.1016/j.insmatheco.2012.03.001. |
[10] |
H. U. Gerber, E. S. W. Shiu and H. Yang,
Valuing equity-linked death benefits in jump diffusion models, Insurance Math. Econom., 53 (2013), 615-623.
doi: 10.1016/j.insmatheco.2013.08.010. |
[11] |
H. U. Gerber, E. S. W. Shiu and H. Yang,
Geometric stopping of a random walk and its applications to valuing equity-linked death benefits, Insurance Math. Econom., 64 (2015), 313-325.
doi: 10.1016/j.insmatheco.2015.06.006. |
[12] |
J. L. Kirkby and D. Nguyen,
Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models, Ann. Finance, 16 (2020), 307-351.
doi: 10.1007/s10436-020-00366-0. |
[13] |
J. L. Kirkby and D. Nguyen,
Equity-linked guaranteed minimum death benefits with dollar cost averaging, Insurance Math. Econom., 100 (2021), 408-428.
doi: 10.1016/j.insmatheco.2021.04.012. |
[14] |
B. Ko and T. Bae,
Pricing guaranteed minimum death benefit contracts under the phase-type law of mortality, Lobachevskii J. Math., 36 (2015), 198-207.
doi: 10.1134/S1995080215020109. |
[15] |
A. W. Kolkiewicz and F. S. Lin,
Pricing surrender risk in ratchet equity-index annuities under regime-switching Lévy processes, N. Am. Actuar. J., 21 (2017), 433-457.
doi: 10.1080/10920277.2017.1302804. |
[16] |
X. Liang, C. C.-L. Tsai and Y. Lu,
Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality, Insurance Math. Econom., 70 (2016), 150-161.
doi: 10.1016/j.insmatheco.2016.06.004. |
[17] |
X. S. Lin and K. P. Sendova,
The compound Poisson risk model with multiple thresholds, Insurance Math. Econom., 42 (2008), 617-627.
doi: 10.1016/j.insmatheco.2007.06.008. |
[18] |
A. MacKay, M. Augustyniak, C. Bernard and M. Hardy,
Risk management of policyholder behavior in equity-linked life insurance, Journal of Risk and Insurance, 84 (2017), 661-690.
doi: 10.1111/jori.12094. |
[19] |
A. C. Ng, The compound Poisson risk model with multiple thresholds, Insurance: Mathematics and Economics, 44 (2009), 315-324. |
[20] |
M. J. Ruijter and C. W. Oosterlee, Two-dimensional Fourier cosine series expansion method for pricing financial options, SIAM J. Sci. Comput., 34 (2012), B642–B671.
doi: 10.1137/120862053. |
[21] |
C. C. Siu, S. C.P. Yam and H. Yang,
Valuing equity-linked death benefits in a regime-switching framework, Astin Bull., 45 (2015), 355-395.
doi: 10.1017/asb.2014.32. |
[22] |
G. Tour, N. Thakoor, A. Q. M. Khaliq and D. Y. Tangman,
COS method for option pricing under a regime-switching model with time-changed Lévy processes, Quant. Finance, 18 (2018), 673-692.
doi: 10.1080/14697688.2017.1412494. |
[23] |
N. Wan,
Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insurance Math. Econom., 40 (2007), 509-523.
doi: 10.1016/j.insmatheco.2006.08.002. |
[24] |
Y. Wang, Z. Zhang and W. Yu, Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model, Appl. Math. Comput., 399 (2021), Paper No. 126031, 15 pp.
doi: 10.1016/j.amc.2021.126031. |
[25] |
J. Xie and Z. Zhang, Finite-time dividend problems in a Lévy risk model under periodic observation, Appl. Math. Comput., 398 (2021), Paper No. 125981, 22 pp.
doi: 10.1016/j.amc.2021.125981. |
[26] |
Z. Zhang,
Approximating the density of the time to ruin via Fourier-cosine series expansion, Astin Bull., 47 (2017), 169-198.
doi: 10.1017/asb.2016.27. |
[27] |
Z. Zhang and E. C. K. Cheung,
A note on a Lévy insurance risk model under periodic dividend decisions, J. Ind. Manag. Optim., 14 (2018), 35-63.
doi: 10.3934/jimo.2017036. |
[28] |
B. Zhang and C. W. Oosterlee,
Efficient pricing of european-style Asian options under exponential Lévy processes based on Fourier cosine expansions, SIAM J. Financial Math., 4 (2013), 399-426.
doi: 10.1137/110853339. |
[29] |
Z. Zhang and Y. Yong,
Valuing guaranteed equity-linked contracts by Laguerre series expansion, J. Comput. Appl. Math., 357 (2019), 329-348.
doi: 10.1016/j.cam.2019.02.032. |
[30] |
Z. Zhang, Y. Yong and W. Yu, Valuing equity-linked death benefits in general exponential Lévy models, J. Comput. Appl. Math., 365 (2020), 112377, 18 pp.
doi: 10.1016/j.cam.2019.112377. |
[31] |
J. Zhou and L. Wu,
Valuing equity-linked death benefits with a threshold expense strategy, Insurance Math. Econom., 62 (2015), 79-90.
doi: 10.1016/j.insmatheco.2015.03.002. |
[32] |
J. Zhou and L. Wu,
The time of deducting fees for variable annuities under the state-dependent fee structure, Insurance Math. Econom., 61 (2015), 125-134.
doi: 10.1016/j.insmatheco.2014.12.008. |
show all references
References:
[1] |
S. Asmussen, Applied Probability and Queues, $2^{nd}$ edition, Springer, New York, 2003. |
[2] |
T.-H. Bae and B.-W. Ko,
On pricing equity-linked investment products with a threshold expense structure, The Korean Journal of Applied Statistics, 23 (2010), 621-633.
doi: 10.5351/KJAS.2010.23.4.621. |
[3] |
C. Bernard, M. Hardy and A. Mackay,
State-dependent fees for variable annuity guarantees, Astin Bulletin, 44 (2014), 559-585.
doi: 10.1017/asb.2014.13. |
[4] |
J. Buffington and R. Elliot,
American options with regime switching models, J. Theor. Appl. Finance, 5 (2002), 497-514.
doi: 10.1142/S0219024902001523. |
[5] |
Z. Cui, J. L. Kirkby and D. Nguyen,
Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps, Insurance Math. Econom., 74 (2017), 46-62.
doi: 10.1016/j.insmatheco.2017.02.010. |
[6] |
Ł. Delong,
Pricing and hedging of variable annuities with state-dependent fees, Insurance Math. Econom., 58 (2014), 24-33.
doi: 10.1016/j.insmatheco.2014.06.002. |
[7] |
F. Fang and C. W. Oosterlee,
A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput., 31 (2008/09), 826-848.
doi: 10.1137/080718061. |
[8] |
F. Fang and C. Oosterlee,
Pricing early-exercise and discrete barrier options by fourier-cosine series expansions, Numerische Mathematik, 114 (2009), 27-62.
doi: 10.1007/s00211-009-0252-4. |
[9] |
H. U. Gerber, E. S. W. Shiu and H. Yang,
Valuing equity-linked death benefits and other contingent options: A discounted density approach, Insurance Math. Econom., 51 (2012), 73-92.
doi: 10.1016/j.insmatheco.2012.03.001. |
[10] |
H. U. Gerber, E. S. W. Shiu and H. Yang,
Valuing equity-linked death benefits in jump diffusion models, Insurance Math. Econom., 53 (2013), 615-623.
doi: 10.1016/j.insmatheco.2013.08.010. |
[11] |
H. U. Gerber, E. S. W. Shiu and H. Yang,
Geometric stopping of a random walk and its applications to valuing equity-linked death benefits, Insurance Math. Econom., 64 (2015), 313-325.
doi: 10.1016/j.insmatheco.2015.06.006. |
[12] |
J. L. Kirkby and D. Nguyen,
Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models, Ann. Finance, 16 (2020), 307-351.
doi: 10.1007/s10436-020-00366-0. |
[13] |
J. L. Kirkby and D. Nguyen,
Equity-linked guaranteed minimum death benefits with dollar cost averaging, Insurance Math. Econom., 100 (2021), 408-428.
doi: 10.1016/j.insmatheco.2021.04.012. |
[14] |
B. Ko and T. Bae,
Pricing guaranteed minimum death benefit contracts under the phase-type law of mortality, Lobachevskii J. Math., 36 (2015), 198-207.
doi: 10.1134/S1995080215020109. |
[15] |
A. W. Kolkiewicz and F. S. Lin,
Pricing surrender risk in ratchet equity-index annuities under regime-switching Lévy processes, N. Am. Actuar. J., 21 (2017), 433-457.
doi: 10.1080/10920277.2017.1302804. |
[16] |
X. Liang, C. C.-L. Tsai and Y. Lu,
Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality, Insurance Math. Econom., 70 (2016), 150-161.
doi: 10.1016/j.insmatheco.2016.06.004. |
[17] |
X. S. Lin and K. P. Sendova,
The compound Poisson risk model with multiple thresholds, Insurance Math. Econom., 42 (2008), 617-627.
doi: 10.1016/j.insmatheco.2007.06.008. |
[18] |
A. MacKay, M. Augustyniak, C. Bernard and M. Hardy,
Risk management of policyholder behavior in equity-linked life insurance, Journal of Risk and Insurance, 84 (2017), 661-690.
doi: 10.1111/jori.12094. |
[19] |
A. C. Ng, The compound Poisson risk model with multiple thresholds, Insurance: Mathematics and Economics, 44 (2009), 315-324. |
[20] |
M. J. Ruijter and C. W. Oosterlee, Two-dimensional Fourier cosine series expansion method for pricing financial options, SIAM J. Sci. Comput., 34 (2012), B642–B671.
doi: 10.1137/120862053. |
[21] |
C. C. Siu, S. C.P. Yam and H. Yang,
Valuing equity-linked death benefits in a regime-switching framework, Astin Bull., 45 (2015), 355-395.
doi: 10.1017/asb.2014.32. |
[22] |
G. Tour, N. Thakoor, A. Q. M. Khaliq and D. Y. Tangman,
COS method for option pricing under a regime-switching model with time-changed Lévy processes, Quant. Finance, 18 (2018), 673-692.
doi: 10.1080/14697688.2017.1412494. |
[23] |
N. Wan,
Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insurance Math. Econom., 40 (2007), 509-523.
doi: 10.1016/j.insmatheco.2006.08.002. |
[24] |
Y. Wang, Z. Zhang and W. Yu, Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model, Appl. Math. Comput., 399 (2021), Paper No. 126031, 15 pp.
doi: 10.1016/j.amc.2021.126031. |
[25] |
J. Xie and Z. Zhang, Finite-time dividend problems in a Lévy risk model under periodic observation, Appl. Math. Comput., 398 (2021), Paper No. 125981, 22 pp.
doi: 10.1016/j.amc.2021.125981. |
[26] |
Z. Zhang,
Approximating the density of the time to ruin via Fourier-cosine series expansion, Astin Bull., 47 (2017), 169-198.
doi: 10.1017/asb.2016.27. |
[27] |
Z. Zhang and E. C. K. Cheung,
A note on a Lévy insurance risk model under periodic dividend decisions, J. Ind. Manag. Optim., 14 (2018), 35-63.
doi: 10.3934/jimo.2017036. |
[28] |
B. Zhang and C. W. Oosterlee,
Efficient pricing of european-style Asian options under exponential Lévy processes based on Fourier cosine expansions, SIAM J. Financial Math., 4 (2013), 399-426.
doi: 10.1137/110853339. |
[29] |
Z. Zhang and Y. Yong,
Valuing guaranteed equity-linked contracts by Laguerre series expansion, J. Comput. Appl. Math., 357 (2019), 329-348.
doi: 10.1016/j.cam.2019.02.032. |
[30] |
Z. Zhang, Y. Yong and W. Yu, Valuing equity-linked death benefits in general exponential Lévy models, J. Comput. Appl. Math., 365 (2020), 112377, 18 pp.
doi: 10.1016/j.cam.2019.112377. |
[31] |
J. Zhou and L. Wu,
Valuing equity-linked death benefits with a threshold expense strategy, Insurance Math. Econom., 62 (2015), 79-90.
doi: 10.1016/j.insmatheco.2015.03.002. |
[32] |
J. Zhou and L. Wu,
The time of deducting fees for variable annuities under the state-dependent fee structure, Insurance Math. Econom., 61 (2015), 125-134.
doi: 10.1016/j.insmatheco.2014.12.008. |
1 | 35.8286 | 31.2993 | 27.7919 | 25.0436 | 22.8343 | 21.0117 | |
35.8286 | 31.2993 | 27.7919 | 25.0436 | 22.8343 | 21.0117 | ||
0.1 | 35.0826 | 30.4789 | 27.0734 | 24.4349 | 22.3055 | 20.5350 | |
35.0826 | 30.4789 | 27.0734 | 24.4349 | 22.3055 | 20.5350 | ||
0.01 | 34.9980 | 30.3918 | 27.0016 | 24.3746 | 22.2527 | 20.4862 | |
34.9978 | 30.3915 | 27.0012 | 24.3743 | 22.2522 | 20.4859 | ||
C.O. | 34.8256 | 30.3869 | 26.9982 | 24.3724 | 22.2516 | 20.4855 |
1 | 35.8286 | 31.2993 | 27.7919 | 25.0436 | 22.8343 | 21.0117 | |
35.8286 | 31.2993 | 27.7919 | 25.0436 | 22.8343 | 21.0117 | ||
0.1 | 35.0826 | 30.4789 | 27.0734 | 24.4349 | 22.3055 | 20.5350 | |
35.0826 | 30.4789 | 27.0734 | 24.4349 | 22.3055 | 20.5350 | ||
0.01 | 34.9980 | 30.3918 | 27.0016 | 24.3746 | 22.2527 | 20.4862 | |
34.9978 | 30.3915 | 27.0012 | 24.3743 | 22.2522 | 20.4859 | ||
C.O. | 34.8256 | 30.3869 | 26.9982 | 24.3724 | 22.2516 | 20.4855 |
BSM | ||
Kou(DE) | ||
MJD | ||
MNJD | ||
BSM | ||
Kou(DE) | ||
MJD | ||
MNJD |
BSM | ||
Kou(DE) | ||
MJD | ||
MNJD | ||
BSM | ||
Kou(DE) | ||
MJD | ||
MNJD |
Model | COS method | MC method | ||||||||||
Mean | ||||||||||||
Value | Time(sec) | Value | Time(sec) | Value | Time(sec) | Lower | Upper | |||||
30 | 52.6245 | 0.6301 | 52.6245 | 2.5990 | 52.8673 | 3.4275 | 52.5522 | 53.1824 | ||||
BSM | 60 | 62.2973 | 1.3866 | 62.2973 | 5.1029 | 62.7358 | 7.0263 | 62.0664 | 63.4052 | |||
30 | 60.9391 | 0.7907 | 60.9389 | 2.4777 | 60.8112 | 692.1551 | 60.1851 | 61.4373 | ||||
Kou(DE) | 60 | 68.6834 | 1.3303 | 68.6863 | 5.1685 | 68.4184 | 1457.9465 | 66.5529 | 70.2839 | |||
30 | 55.2039 | 0.6401 | 55.2039 | 2.6163 | 55.1863 | 1497.4727 | 54.8200 | 55.5526 | ||||
MJD | 60 | 64.3113 | 1.4141 | 64.3113 | 5.2043 | 64.313767 | 1955.5970 | 63.4624 | 65.1651 | |||
30 | 60.8012 | 0.7566 | 60.8012 | 2.6076 | 60.9323 | 1565.7978 | 60.3158 | 61.5489 | ||||
MNJD | 60 | 68.6062 | 1.4865 | 68.6068 | 5.2389 | 68.5280 | 3037.4160 | 66.6457 | 70.4103 |
Model | COS method | MC method | ||||||||||
Mean | ||||||||||||
Value | Time(sec) | Value | Time(sec) | Value | Time(sec) | Lower | Upper | |||||
30 | 52.6245 | 0.6301 | 52.6245 | 2.5990 | 52.8673 | 3.4275 | 52.5522 | 53.1824 | ||||
BSM | 60 | 62.2973 | 1.3866 | 62.2973 | 5.1029 | 62.7358 | 7.0263 | 62.0664 | 63.4052 | |||
30 | 60.9391 | 0.7907 | 60.9389 | 2.4777 | 60.8112 | 692.1551 | 60.1851 | 61.4373 | ||||
Kou(DE) | 60 | 68.6834 | 1.3303 | 68.6863 | 5.1685 | 68.4184 | 1457.9465 | 66.5529 | 70.2839 | |||
30 | 55.2039 | 0.6401 | 55.2039 | 2.6163 | 55.1863 | 1497.4727 | 54.8200 | 55.5526 | ||||
MJD | 60 | 64.3113 | 1.4141 | 64.3113 | 5.2043 | 64.313767 | 1955.5970 | 63.4624 | 65.1651 | |||
30 | 60.8012 | 0.7566 | 60.8012 | 2.6076 | 60.9323 | 1565.7978 | 60.3158 | 61.5489 | ||||
MNJD | 60 | 68.6062 | 1.4865 | 68.6068 | 5.2389 | 68.5280 | 3037.4160 | 66.6457 | 70.4103 |
Model | COS method | MC method | ||||||||||
Mean | ||||||||||||
Value | Time(sec) | Value | Time(sec) | Value | Time(sec) | Lower | Upper | |||||
30 | 55.9191 | 0.7598 | 55.9191 | 2.4770 | 55.6698 | 3.6186 | 55.3396 | 56.0000 | ||||
BSM | 60 | 65.4643 | 1.3866 | 65.4643 | 5.0556 | 65.0906 | 7.1603 | 64.3606 | 65.8206 | |||
30 | 63.0073 | 0.6424 | 63.0072 | 2.6167 | 62.5578 | 708.2445 | 61.8836 | 63.2319 | ||||
Kou(DE) | 60 | 70.6986 | 1.4507 | 70.6979 | 5.1633 | 70.5694 | 1440.9059 | 68.4339 | 72.7048 | |||
30 | 58.0972 | 0.7539 | 58.0972 | 2.6003 | 57.8536 | 934.2320 | 57.4455 | 58.2617 | ||||
MJD | 60 | 67.1014 | 1.2928 | 67.0997 | 5.2210 | 66.7409 | 1929.4853 | 65.7567 | 67.7250 | |||
30 | 62.8908 | 0.6188 | 62.8908 | 2.6428 | 62.7879 | 1562.6075 | 62.1114 | 63.4644 | ||||
MNJD | 60 | 70.6342 | 1.5680 | 70.6340 | 5.2169 | 70.1752 | 3154.4060 | 67.9776 | 72.3728 |
Model | COS method | MC method | ||||||||||
Mean | ||||||||||||
Value | Time(sec) | Value | Time(sec) | Value | Time(sec) | Lower | Upper | |||||
30 | 55.9191 | 0.7598 | 55.9191 | 2.4770 | 55.6698 | 3.6186 | 55.3396 | 56.0000 | ||||
BSM | 60 | 65.4643 | 1.3866 | 65.4643 | 5.0556 | 65.0906 | 7.1603 | 64.3606 | 65.8206 | |||
30 | 63.0073 | 0.6424 | 63.0072 | 2.6167 | 62.5578 | 708.2445 | 61.8836 | 63.2319 | ||||
Kou(DE) | 60 | 70.6986 | 1.4507 | 70.6979 | 5.1633 | 70.5694 | 1440.9059 | 68.4339 | 72.7048 | |||
30 | 58.0972 | 0.7539 | 58.0972 | 2.6003 | 57.8536 | 934.2320 | 57.4455 | 58.2617 | ||||
MJD | 60 | 67.1014 | 1.2928 | 67.0997 | 5.2210 | 66.7409 | 1929.4853 | 65.7567 | 67.7250 | |||
30 | 62.8908 | 0.6188 | 62.8908 | 2.6428 | 62.7879 | 1562.6075 | 62.1114 | 63.4644 | ||||
MNJD | 60 | 70.6342 | 1.5680 | 70.6340 | 5.2169 | 70.1752 | 3154.4060 | 67.9776 | 72.3728 |
BSM | Kou(DE) | MJD | MNJD | |||||||||
110 | 44.7548 | 47.6643 | 50.5271 | 52.6335 | 47.0423 | 49.4114 | 51.6029 | 53.5005 | ||||
140 | 38.5904 | 42.3158 | 46.9095 | 49.2138 | 41.2790 | 44.5152 | 47.5186 | 49.8212 | ||||
170 | 34.8883 | 38.3526 | 43.0069 | 45.2976 | 37.6470 | 40.7673 | 44.1626 | 46.4576 | ||||
200 | 32.2941 | 35.4808 | 39.6674 | 41.8896 | 35.1186 | 38.0277 | 42.1979 | 44.4442 | ||||
110 | 69.4464 | 71.5599 | 73.0547 | 74.7596 | 70.8398 | 72.5261 | 73.2677 | 74.7749 | ||||
140 | 60.2182 | 63.4759 | 66.9787 | 69.0355 | 62.3668 | 65.1826 | 67.0595 | 69.0808 | ||||
170 | 54.2824 | 57.3588 | 62.0305 | 64.0756 | 56.7456 | 59.5144 | 62.2488 | 64.3305 | ||||
200 | 49.8613 | 52.7005 | 58.0956 | 60.0775 | 52.5483 | 55.1467 | 58.7869 | 60.8205 |
BSM | Kou(DE) | MJD | MNJD | |||||||||
110 | 44.7548 | 47.6643 | 50.5271 | 52.6335 | 47.0423 | 49.4114 | 51.6029 | 53.5005 | ||||
140 | 38.5904 | 42.3158 | 46.9095 | 49.2138 | 41.2790 | 44.5152 | 47.5186 | 49.8212 | ||||
170 | 34.8883 | 38.3526 | 43.0069 | 45.2976 | 37.6470 | 40.7673 | 44.1626 | 46.4576 | ||||
200 | 32.2941 | 35.4808 | 39.6674 | 41.8896 | 35.1186 | 38.0277 | 42.1979 | 44.4442 | ||||
110 | 69.4464 | 71.5599 | 73.0547 | 74.7596 | 70.8398 | 72.5261 | 73.2677 | 74.7749 | ||||
140 | 60.2182 | 63.4759 | 66.9787 | 69.0355 | 62.3668 | 65.1826 | 67.0595 | 69.0808 | ||||
170 | 54.2824 | 57.3588 | 62.0305 | 64.0756 | 56.7456 | 59.5144 | 62.2488 | 64.3305 | ||||
200 | 49.8613 | 52.7005 | 58.0956 | 60.0775 | 52.5483 | 55.1467 | 58.7869 | 60.8205 |
Model | Cumulants |
|
BSM | ||
Kou(DE) | ||
MJD | ||
MNJD |
Model | Cumulants |
|
BSM | ||
Kou(DE) | ||
MJD | ||
MNJD |
[1] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1689-1707. doi: 10.3934/jimo.2021039 |
[2] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
[3] |
Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335 |
[4] |
Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control and Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036 |
[5] |
Alexander Melnikov, Hongxi Wan. CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 343-368. doi: 10.3934/puqr.2021017 |
[6] |
Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079 |
[7] |
Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072 |
[8] |
Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132 |
[9] |
A. Settati, A. Lahrouz, Mohamed El Fatini, A. El Haitami, M. El Jarroudi, M. Erriani. A Markovian switching diffusion for an SIS model incorporating Lévy processes. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022072 |
[10] |
Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048 |
[11] |
Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control and Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022 |
[12] |
Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237 |
[13] |
Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021034 |
[14] |
Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014 |
[15] |
Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021309 |
[16] |
Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100 |
[17] |
Manman Li, George Yin. Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model. Journal of Industrial and Management Optimization, 2019, 15 (2) : 517-535. doi: 10.3934/jimo.2018055 |
[18] |
Ishak Alia, Mohamed Sofiane Alia. Open-loop equilibrium strategy for mean-variance Portfolio selection with investment constraints in a non-Markovian regime-switching jump-diffusion model. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022048 |
[19] |
Yaodi Yong, Hailiang Yang. Valuation of cliquet-style guarantees with death benefits. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021188 |
[20] |
Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]