[1]
|
T. Blickle and L. Thiele, A comparison of selection schemes used in evolutionary algorithms, Evolutionary Computation, 4 (1996), 361-394.
doi: 10.1162/evco.1996.4.4.361.
|
[2]
|
M. Bortolini, E. Ferrari, F. G. Galizia and A. Regattieri, An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints, Journal of Manufacturing Systems, 58 (2021), 442-451.
doi: 10.1016/j.jmsy.2021.01.001.
|
[3]
|
C. W. Chou, C. F. Chien and M. Gen, A multiobjective hybrid genetic algorithm for tft-lcd module assembly scheduling, IEEE Transactions on Automation Science and Engineering, 11 (2014), 692-705.
doi: 10.1109/TASE.2014.2316193.
|
[4]
|
K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[5]
|
K. Deep and P. K. Singh, Design of robust cellular manufacturing system for dynamic part population considering multiple processing routes using genetic algorithm, Journal of Manufacturing Systems, 35 (2015), 155-163.
doi: 10.1016/j.jmsy.2014.09.008.
|
[6]
|
I. Eguia, J. C. Molina, S. Lozano and J. Racero, Cell design and multi-period machine loading in cellular reconfigurable manufacturing systems with alternative routing, International Journal of Production Research, 55 (2017), 2775-2790.
doi: 10.1080/00207543.2016.1193673.
|
[7]
|
B. Erfani, S. Ebrahimnejad and A. Moosavi, An integrated dynamic facility layout and job shop scheduling problem: A hybrid nsga-ii and local search algorithm, J. Ind. Manag. Optim., 16 (2020), 1801-1834.
doi: 10.3934/jimo.2019030.
|
[8]
|
J. Fan and D. Feng, Design of cellular manufacturing system with quasi-dynamic dual resource using multi-objective ga, International Journal of Production Research, 51 (2013), 4134-4154.
doi: 10.1080/00207543.2012.748228.
|
[9]
|
H. Feng, W. Da, L. Xi, E. Pan and T. Xia, Solving the integrated cell formation and worker assignment problem using particle swarm optimization and linear programming, Computers & Industrial Engineering, 110 (2017), 126-137.
doi: 10.1016/j.cie.2017.05.038.
|
[10]
|
R. Y. Fung, F. Liang, Z. Jiang and T. Wong, A multi-stage methodology for virtual cell formation oriented agile manufacturing, The International Journal of Advanced Manufacturing Technology, 36 (2008), 798-810.
doi: 10.1007/s00170-006-0871-1.
|
[11]
|
H. Guo, M. Chen, K. Mohamed, T. Qu, S. Wang and J. Li, A digital twin-based flexible cellular manufacturing for optimization of air conditioner line, Journal of Manufacturing Systems, 58 (2021), 65-78.
doi: 10.1016/j.jmsy.2020.07.012.
|
[12]
|
W. Hachicha, F. Masmoudi and M. Haddar, Formation of machine groups and part families in cellular manufacturing systems using a correlation analysis approach, The International Journal of Advanced Manufacturing Technology, 36 (2008), 1157-1169.
doi: 10.1007/s00170-007-0928-9.
|
[13]
|
M. Hamedi, G. Esmaeilian, N. Ismail and M. Ariffin, A survey on formation of virtual cellular manufacturing systems (vcmss) and related issues, Scientific Research and Essays, 7 (2012), 3316-3328.
|
[14]
|
W. Han, Y. Yu, L. Gao, J. Fang and Z. Li, Virtual cellular inheritance reconfiguration driven by random arrival orders and time window, Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 24 (2018), 1317-1326.
|
[15]
|
A. Hosseini, M. M. Paydar, I. Mahdavi and J. Jouzdani, Cell forming and cell balancing of virtual cellular manufacturing systems with alternative processing routes using genetic algorithm, Journal of Optimization in Industrial Engineering, 9 (2016), 41-51.
|
[16]
|
M. Imran, C. Kang, Y. H. Lee, M. Jahanzaib and H. Aziz, Cell formation in a cellular manufacturing system using simulation integrated hybrid genetic algorithm, Computers & Industrial Engineering, 105 (2017), 123-135.
doi: 10.1016/j.cie.2016.12.028.
|
[17]
|
B. Karoum and Y. B. Elbenani, Optimization of the material handling costs and the machine reliability in cellular manufacturing system using cuckoo search algorithm, Neural Computing and Applications, 31 (2019), 3743-3757.
doi: 10.1007/s00521-017-3302-3.
|
[18]
|
R. Kia, N. Javadian, M. M. Paydar and M. Saidi-Mehrabad, A simulated annealing for intra-cell layout design of dynamic cellular manufacturing systems with route selection, purchasing machines and cell reconfiguration, Asia-Pac. J. Oper. Res., 30 (2013), 1350004, 41 pp.
doi: 10.1142/S0217595913500048.
|
[19]
|
A. Kusiak, The generalized group technology concept, International journal of production research, 25 (1987), 561-569.
doi: 10.1080/00207548708919861.
|
[20]
|
J. Li, A. Wang and C. Tang, Production planning in virtual cell of reconfiguration manufacturing system using genetic algorithm, The International Journal of Advanced Manufacturing Technology, 74 (2014), 47-64.
doi: 10.1007/s00170-014-5987-0.
|
[21]
|
J. Q. Li, Q. K. Pan and M. F. Tasgetiren, A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities, Appl. Math. Model., 38 (2014), 1111-1132.
doi: 10.1016/j.apm.2013.07.038.
|
[22]
|
J. Q. Li, Q. K. Pan and F. T. Wang, A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem, Applied Soft Computing, 24 (2014), 63-77.
doi: 10.1016/j.asoc.2014.07.005.
|
[23]
|
J. Q. Li, H. Y. Sang, Y. Y. Han, C. G. Wang and K. Z. Gao, Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions, Journal of Cleaner Production, 181 (2018), 584-598.
doi: 10.1016/j.jclepro.2018.02.004.
|
[24]
|
C. Liu, J. Wang and M. Zhou, Reconfiguration of virtual cellular manufacturing systems via improved imperialist competitive approach, IEEE Transactions on Automation Science and Engineering, 16 (2018), 1301-1314.
doi: 10.1109/TASE.2018.2878653.
|
[25]
|
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems, International Journal of Production Research, 49 (2011), 6517-6537.
doi: 10.1080/00207543.2010.524902.
|
[26]
|
P. M. Mahdi and S.-M. Mohammad, A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection, The International Journal of Advanced Manufacturing Technology, 92 (2017), 3001-3017.
|
[27]
|
M. Mohammadi and K. Forghani, A hybrid method based on genetic algorithm and dynamic programming for solving a bi-objective cell formation problem considering alternative process routings and machine duplication, Applied Soft Computing, 53 (2017), 97-110.
doi: 10.1016/j.asoc.2016.12.039.
|
[28]
|
M. Moradgholi, M. M. Paydar, I. Mahdavi and J. Jouzdani, A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem, Journal of Industrial Engineering International, 12 (2016), 343-359.
doi: 10.1007/s40092-016-0151-0.
|
[29]
|
J. S. Morris and R. J. Tersine, A simulation analysis of factors influencing the attractiveness of group technology cellular layouts, Management Science, 36 (1990), 1567-1578.
|
[30]
|
F. Niakan, A. Baboli, T. Moyaux and V. Botta-Genoulaz, A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment, Journal of Manufacturing Systems, 38 (2016), 46-62.
doi: 10.1016/j.jmsy.2015.11.001.
|
[31]
|
E. Nikoofarid and A. Aalaei, Production planning and worker assignment in a dynamic virtual cellular manufacturing system, International Journal of Management Science and Engineering Management, 7 (2012), 89-95.
doi: 10.1080/17509653.2012.10671211.
|
[32]
|
Q. K. Pan, L. Wang and B. Qian, A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems, Comput. Oper. Res., 36 (2009), 2498-2511.
doi: 10.1016/j.cor.2008.10.008.
|
[33]
|
M. Rabbani, H. Farrokhi-Asl and M. Ravanbakhsh, Dynamic cellular manufacturing system considering machine failure and workload balance, Journal of Industrial Engineering International, 15 (2019), 25-40.
doi: 10.1007/s40092-018-0261-y.
|
[34]
|
V. Rahimi, J. Arkat and H. Farughi, A vibration damping optimization algorithm for the integrated problem of cell formation, cellular scheduling, and intercellular layout, Computers & Industrial Engineering, 143 (2020), 106439.
doi: 10.1016/j.cie.2020.106439.
|
[35]
|
J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam and F. Jolai, A hybrid approach based on the genetic algorithm and neural network to design an incremental cellular manufacturing system, Applied Soft Computing, 11 (2011), 4195-4202.
doi: 10.1016/j.asoc.2011.03.013.
|
[36]
|
D. Rogers and S. Shafer, Measuring cellular manufacturing performance, In Manufacturing Research and Technology, 24 1995,147–165.
doi: 10.1016/S1572-4417(06)80040-9.
|
[37]
|
B. Sarker, Grouping efficiency measures in cellular manufacturing: A survey and critical review, International Journal of Production Research, 37 (1999), 285-314.
doi: 10.1080/002075499191779.
|
[38]
|
G. Syswerda, Uniform crossover in genetic algorithms, In Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, (1989), 2–9.
|
[39]
|
G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. Da Luz, E. Raposo and H. E. Stanley, Optimizing the success of random searches, Nature, 401 (1999), 911-914.
doi: 10.1038/44831.
|
[40]
|
G. Xue and O. F. Offodile, Integrated optimization of dynamic cell formation and hierarchical production planning problems, Computers & Industrial Engineering, 139 (2020), 106155.
doi: 10.1016/j.cie.2019.106155.
|
[41]
|
X. S. Yang and S. Deb, Cuckoo search via lévy flights, In 2009 World Congress on Nature & Biologically inspired computing (NaBIC), Ieee, (2009), 210–214.
|