doi: 10.3934/jimo.2022026
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Real-time online trajectory planning and guidance for terminal area energy management of unmanned aerial vehicle

1. 

State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang, 050081, China

2. 

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

3. 

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

*Corresponding author: Yingjing Shi (shiyingjing@uestc.edu.cn)

Received  October 2021 Revised  December 2021 Early access February 2022

Fund Project: This work is supported in part by the National Natural Science Foundation of China under grant (No. 61973055), the Fundamental Research Funds for the Central Universities (No. ZYGX2019J062) and the Key Research Development Program of HeBei (No. 19210906D)

Aiming at the energy management problem of unmanned aerial vehicles (UAVs) in the terminal area energy management (TAEM) phase, a real-time online trajectory planning and guidance strategy based on judging energy is proposed. The trajectory planning strategy estimates the flight profile online in real time by judging the energy and changing the radius of the heading alignment circle. In addition, guidance instructions are also obtained at once. In the S-turn stage, the lateral guidance adopts a closed loop control mode with a fixed bank angle. In the remaining stage, the lateral guidance adopts a closed loop control mode for tracking the azimuth angle. In all stages, the longitudinal guidance adopts a closed loop control mode for tracking the flight path angle and flight height. The trajectory planning strategy is able to quickly generate a reference trajectory for testing cases with large variations not only in the initial energy but also in the energy of the flight process. The simulation results show that the proposed trajectory planning and guidance strategy can effectively manage a UAV's energy in the TAEM phase, ensuring that the UAV lands safely.

Citation: Xiaoyong Mao, Baoguo Yu, Yingjing Shi, Rui Li. Real-time online trajectory planning and guidance for terminal area energy management of unmanned aerial vehicle. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2022026
References:
[1]

R. K. Rangel, C. A. De Oliveira and K. H. Kienitz, Development of a multipurpose tactical surveillance system using UAV's, in 2014 IEEE Aerospace Conference, Big Sky, MT, United States, 2014, 6836300. doi: 10.1109/AERO.2014.6836300.

[2]

M. Seleck, J. Faigl and M. Rollo, Mixed reality simulation for incremental development of multi-UAV systems, in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, United States, 2017, 1530–1538. doi: 10.1109/ICUAS.2017.7991351.

[3]

T. Petrova and Z. Petrov, Long term development perspectives for UAV potential, International E-Journal of Advances in Social Sciences, 6 (2020), 45-53. 

[4]

C. A. Kluever and D. A. Neal, Approach and landing range guidance for an unpowered reusable launch vehicle, Journal of Guidance, Control, and Dynamics, 38 (2015), 2057-2066.  doi: 10.2514/1.G000909.

[5]

M. J. TahkG. H. Moon and S. W. Shim, Augmented polynomial guidance with terminal speed constraints for unpowered aerial vehicles, International Journal of Aeronautical, 20 (2018), 183-194.  doi: 10.1007/s42405-018-0093-4.

[6]

S. LimS. Cho and E. Lee, Guidance to control arrival angle and altitude for an unpowered aerial vehicle, International Journal of Aeronautical and Space Sciences, 21 (2020), 1078-1091.  doi: 10.1007/s42405-020-00265-8.

[7]

T. E. Moore, Space shuttle entry terminal area energy management, NASA Technical Memorandum (104744), 1991.

[8]

K. Horneman and C. Kluever, Terminal area energy management trajectory planning for an unpowered reusable launch vehicle, in AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, United States, 2004, 1103–1120. doi: 10.2514/6.2004-5183.

[9]

L. MuX. YuY. ZhangP. Li and X. Wang, Trajectory planning for terminal area energy management phase of reusable launch vehicles, IFAC-PapersOnline, 49 (2016), 462-467.  doi: 10.1016/j.ifacol.2016.09.079.

[10]

W. Jiang and Z. Yang, Guidance law design for terminal area energy management of reusable launch vehicle by energy-to-range ratio, Mathematical Problems in Engineering, 2014 (2014), 929731.  doi: 10.1155/2014/929731.

[11]

C. Kluever, K. Horneman and J. Schierman, Rapid terminal-trajectory planner for an unpowered reusable launch vehicle, in AIAA Guidance, Navigation, and Control Conference, Chicago, IL, United States, 2009, 5766. doi: 10.2514/6.2009-5766.

[12]

S. De Ridder and E. Mooij, Terminal area trajectory planning using the energy-tube concept for reusable launch vehicles, Acta Astronautica, 68 (2011), 915-930.  doi: 10.1016/j.actaastro.2010.08.032.

[13]

L. MuY. XiangY. ZhangL. Ping and X. Wang, Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase, Acta Astronautica, 143 (2018), 62-75.  doi: 10.1016/j.actaastro.2017.10.027.

[14]

X. LanL. Liu and Y. Wang, Online trajectory planning and guidance for reusable launch vehicles in the terminal area, Acta Astronautica, 118 (2016), 237-245.  doi: 10.1016/j.actaastro.2015.10.019.

[15]

X. LanW. Xu and Y. Wang, 3D profile reconstruction and guidance for the terminal area energy management phase of an unpowered RLV with aerosurface failure, Journal of Aerospace Engineering, 33 (2020), 04020003.  doi: 10.1061/(ASCE)AS.1943-5525.0001112.

[16]

B. T. Burchett, Fuzzy logic trajectory design and guidance for terminal area energy management, Journal of Spacecraft and Rockets, 41 (2004), 444-450.  doi: 10.2514/6.2004-700.

[17]

V. MorioF. CazaurangA. Falcoz and P. Vernis, Robust terminal area energy management guidance using flatness approach, IET Control Theory & Applications, 4 (2010), 472-486.  doi: 10.1049/iet-cta.2008.0463.

[18]

Z. Min, J. Zhou and Z. Guo, Finite-time sliding mode based terminal area guidance with multiple constraints, in 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), Nagpya, Japan, 2018, 60–64. doi: 10.1109/ICCRE.2018.8376434.

show all references

References:
[1]

R. K. Rangel, C. A. De Oliveira and K. H. Kienitz, Development of a multipurpose tactical surveillance system using UAV's, in 2014 IEEE Aerospace Conference, Big Sky, MT, United States, 2014, 6836300. doi: 10.1109/AERO.2014.6836300.

[2]

M. Seleck, J. Faigl and M. Rollo, Mixed reality simulation for incremental development of multi-UAV systems, in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, United States, 2017, 1530–1538. doi: 10.1109/ICUAS.2017.7991351.

[3]

T. Petrova and Z. Petrov, Long term development perspectives for UAV potential, International E-Journal of Advances in Social Sciences, 6 (2020), 45-53. 

[4]

C. A. Kluever and D. A. Neal, Approach and landing range guidance for an unpowered reusable launch vehicle, Journal of Guidance, Control, and Dynamics, 38 (2015), 2057-2066.  doi: 10.2514/1.G000909.

[5]

M. J. TahkG. H. Moon and S. W. Shim, Augmented polynomial guidance with terminal speed constraints for unpowered aerial vehicles, International Journal of Aeronautical, 20 (2018), 183-194.  doi: 10.1007/s42405-018-0093-4.

[6]

S. LimS. Cho and E. Lee, Guidance to control arrival angle and altitude for an unpowered aerial vehicle, International Journal of Aeronautical and Space Sciences, 21 (2020), 1078-1091.  doi: 10.1007/s42405-020-00265-8.

[7]

T. E. Moore, Space shuttle entry terminal area energy management, NASA Technical Memorandum (104744), 1991.

[8]

K. Horneman and C. Kluever, Terminal area energy management trajectory planning for an unpowered reusable launch vehicle, in AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, United States, 2004, 1103–1120. doi: 10.2514/6.2004-5183.

[9]

L. MuX. YuY. ZhangP. Li and X. Wang, Trajectory planning for terminal area energy management phase of reusable launch vehicles, IFAC-PapersOnline, 49 (2016), 462-467.  doi: 10.1016/j.ifacol.2016.09.079.

[10]

W. Jiang and Z. Yang, Guidance law design for terminal area energy management of reusable launch vehicle by energy-to-range ratio, Mathematical Problems in Engineering, 2014 (2014), 929731.  doi: 10.1155/2014/929731.

[11]

C. Kluever, K. Horneman and J. Schierman, Rapid terminal-trajectory planner for an unpowered reusable launch vehicle, in AIAA Guidance, Navigation, and Control Conference, Chicago, IL, United States, 2009, 5766. doi: 10.2514/6.2009-5766.

[12]

S. De Ridder and E. Mooij, Terminal area trajectory planning using the energy-tube concept for reusable launch vehicles, Acta Astronautica, 68 (2011), 915-930.  doi: 10.1016/j.actaastro.2010.08.032.

[13]

L. MuY. XiangY. ZhangL. Ping and X. Wang, Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase, Acta Astronautica, 143 (2018), 62-75.  doi: 10.1016/j.actaastro.2017.10.027.

[14]

X. LanL. Liu and Y. Wang, Online trajectory planning and guidance for reusable launch vehicles in the terminal area, Acta Astronautica, 118 (2016), 237-245.  doi: 10.1016/j.actaastro.2015.10.019.

[15]

X. LanW. Xu and Y. Wang, 3D profile reconstruction and guidance for the terminal area energy management phase of an unpowered RLV with aerosurface failure, Journal of Aerospace Engineering, 33 (2020), 04020003.  doi: 10.1061/(ASCE)AS.1943-5525.0001112.

[16]

B. T. Burchett, Fuzzy logic trajectory design and guidance for terminal area energy management, Journal of Spacecraft and Rockets, 41 (2004), 444-450.  doi: 10.2514/6.2004-700.

[17]

V. MorioF. CazaurangA. Falcoz and P. Vernis, Robust terminal area energy management guidance using flatness approach, IET Control Theory & Applications, 4 (2010), 472-486.  doi: 10.1049/iet-cta.2008.0463.

[18]

Z. Min, J. Zhou and Z. Guo, Finite-time sliding mode based terminal area guidance with multiple constraints, in 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), Nagpya, Japan, 2018, 60–64. doi: 10.1109/ICCRE.2018.8376434.

Figure 1.  Forces acting on the UAV
Figure 2.  Three predicted trajectories at TAEM phase
Figure 3.  The strategy logic flowchart at TAEM phase
Figure 4.  Predicted trajectory at separation state
Figure 5.  Predicted trajectory at intersection state
Figure 6.  The point A is below point D when two circles are tangent
Figure 7.  The point A is above point D when two circles are tangent
Figure 8.  Velocity-height profile with different heights
Figure 9.  Ground track with different heights
Figure 10.  Flight status - overloading and dynamic pressure with different heights
Figure 11.  Velocity-height profile with different velocities
Figure 12.  Ground track with different velocities
Figure 13.  Flight status - overloading and dynamic pressure with different velocities
Figure 14.  Velocity-height profile with wind disturbances
Figure 15.  Ground track with wind disturbances
Figure 16.  Flight status - overloading and dynamic pressure with wind disturbances
Table 1.  The restrictions and terminal conditions
State Maximum
$ q (KPa) $ $ \leq $ 11
$ |n_{z}| $ $ \leq $ 10
$ |V| (m/s) $ $ \leq $ 310
$ |h| (km) $ $ \leq $ 5
$ |\chi| (degrees) $ $ \leq $ 30
$ |y| (km) $ $ \leq $ 10
State Maximum
$ q (KPa) $ $ \leq $ 11
$ |n_{z}| $ $ \leq $ 10
$ |V| (m/s) $ $ \leq $ 310
$ |h| (km) $ $ \leq $ 5
$ |\chi| (degrees) $ $ \leq $ 30
$ |y| (km) $ $ \leq $ 10
Table 2.  The values of initial state at TAEM phase
Cases $ H(km) $ $ V(m/s) $ $ \gamma(deg) $ $ \chi(deg) $ $ X(km) $ $ Y(km) $
Case1 18.5 990 -8 0 -85 0
Case2 21.5 990 -8 0 -85 0
Case3 24.5 990 -8 0 -85 0
Case4 19.4 850 -8 0 -75 0
Case5 19.4 990 -8 0 -75 0
Case6 19.4 1100 -8 0 -75 0
Cases $ H(km) $ $ V(m/s) $ $ \gamma(deg) $ $ \chi(deg) $ $ X(km) $ $ Y(km) $
Case1 18.5 990 -8 0 -85 0
Case2 21.5 990 -8 0 -85 0
Case3 24.5 990 -8 0 -85 0
Case4 19.4 850 -8 0 -75 0
Case5 19.4 990 -8 0 -75 0
Case6 19.4 1100 -8 0 -75 0
[1]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial and Management Optimization, 2022, 18 (2) : 825-841. doi: 10.3934/jimo.2020180

[2]

Xinwei Wang, Hai Wang, Hongyun Zhang, Min Wang, Lei Wang, Kaikai Cui, Chen Lu, Yu Ding. A mini review on UAV mission planning. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022089

[3]

Kang-Yu Ni, Shankar Rao, Yuri Owechko. Foveated compressive imaging for low power vehicle fingerprinting and tracking in aerial imagery. Inverse Problems and Imaging, 2017, 11 (1) : 177-202. doi: 10.3934/ipi.2017009

[4]

Xuemei Zhang, Chenhao Ma, Jiawei Hu, Wei Shi. Optimal distribution strategy and online channel mode by considering retailer's fairness concerns. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022069

[5]

Jianxun Fu, Song Zhang. A new type of non-landing exponential rays. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4179-4196. doi: 10.3934/dcds.2020177

[6]

Gafurjan Ibragimov, Askar Rakhmanov, Idham Arif Alias, Mai Zurwatul Ahlam Mohd Jaffar. The soft landing problem for an infinite system of second order differential equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 89-94. doi: 10.3934/naco.2017005

[7]

Yi Cui, Xintong Fang, Gaoqi Liu, Bin Li. Trajectory optimization of UAV based on Hp-adaptive Radau pseudospectral method. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021201

[8]

M. H. Shavakh, B. Bidabad. Time-optimal of fixed wing UAV aircraft with input and output constraints. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 583-599. doi: 10.3934/naco.2021023

[9]

Nicolas Boizot, Jean-Paul Gauthier. On the motion planning of the ball with a trailer. Mathematical Control and Related Fields, 2013, 3 (3) : 269-286. doi: 10.3934/mcrf.2013.3.269

[10]

Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008

[11]

Michael Herty, Gabriella Puppo, Giuseppe Visconti. Model of vehicle interactions with autonomous cars and its properties. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022100

[12]

Urmila Pyakurel, Tanka Nath Dhamala. Evacuation planning by earliest arrival contraflow. Journal of Industrial and Management Optimization, 2017, 13 (1) : 489-503. doi: 10.3934/jimo.2016028

[13]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[14]

Rafael Caballero, Trinidad Gomez, Julian Molina, Osvaldo Fosado, Maria A. Leon, Madelen Garofal, Beatriz Saavedra. Sawing planning using a multicriteria approach. Journal of Industrial and Management Optimization, 2009, 5 (2) : 303-317. doi: 10.3934/jimo.2009.5.303

[15]

Dragos-Patru Covei, Elena Cristina Canepa, Traian A. Pirvu. Stochastic production planning with regime switching. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022013

[16]

Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics and Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008

[17]

Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4023-4054. doi: 10.3934/cpaa.2020178

[18]

Ruinian Li, Yinhao Xiao, Cheng Zhang, Tianyi Song, Chunqiang Hu. Cryptographic algorithms for privacy-preserving online applications. Mathematical Foundations of Computing, 2018, 1 (4) : 311-330. doi: 10.3934/mfc.2018015

[19]

Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185

[20]

Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (168)
  • HTML views (98)
  • Cited by (0)

Other articles
by authors

[Back to Top]