\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A novel BWM integrated MABAC decision-making approach to optimize the wear parameter of CrN/TiAlSiN coating

  • *Corresponding author: Saikat Ranjan Maity

    *Corresponding author: Saikat Ranjan Maity 
Abstract / Introduction Full Text(HTML) Figure(6) / Table(22) Related Papers Cited by
  • Using a multi-criteria decision-making (MCDM) method combined with a Taguchi ($ L_{16} $) design of experiment, the wear parameter for CrN/TiAlSiN coated hardened DAC-10 tool steel is optimized. Temperature, sliding velocity, applied load, and sliding distance together forms the wear parameter. Wear rate, friction coefficient, surface roughness, wear depth, and worn surface hardness were all tested to see how it affected by the wear parameters. The criteria weight was derived using the best-worst method (BWM) and combined with the Multi-Attributive Border Approximation area Comparison (MABAC) approach to rank the alternatives. The obtained data were then subjected to sensitivity testing using three-phase techniques. The suggested MCDM technique was validated through all phases of sensitivity analysis, with alternative $ {WP}_6 $ (T = 100 $ ^{\circ} $C, Sv = 0.05 m/s, L = 5 N, and Sd = 2000 m) showing as the best alternative. Furthermore, the proposed method BWM-MABAC was tested on previously published outcomes, and the results showed an excellent correlation between present and past studies, with a rank correlation coefficient value of greater than 0.99.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  (a) Cross-sectional FE-SEM micrograph and (b) corresponding line EDS of CrN/TiAlSiN coating

    Figure 2.  Representation of $ G_- $, G and $ G_+ $

    Figure 3.  Algorithm of the proposed methodology

    Figure 4.  Sensitivity analysis of BWM-MABAC method using criteria weight change

    Figure 5.  Effect of dynamic matrices on the ranking of MABAC method

    Figure 6.  Comparison between proposed MABAC and other developed MCDM methods

    Table 1.  Literature review

    Author
    (Year)
    Materials Optimization Technique Process parameter Wear responses
    Kaushik et al. (2018)[21] AA6063/SiCp composites Taguchi integrated GRA-PCA Applied Load, Sliding distance and Weight percentage of SiC Wear rate, Frictional force and specific wear rate
    Stalin et al. (2018) [65] AA6063-Si3N4 composite Taguchi Load, Weight percentage of reinforcement, Sliding velosity and distance Wear rate
    Singh et al. (2018) [63] Phyllanthus Emblica seeds oilbased lubricants Response surface methodology (RSM) Blend ratio, Load and Sliding velosity Specific wear rate and CoF
    Singh et al. (2018) [62] AA6082-T6/ TiB2 composites RSM Reinforcement, Sliding speed, Load and Sliding distance Wear
    Prakash et al. (2018) [51] (413/B4C) composites Integrated Taguchi with Gray relational analysis Reinforcement, Sliding speed, Load and Sliding distance Specific wear rate and CoF
    Aliyu et al. (2020) [2] UHMWPE composites Taguchi SiC loading, Consolidation pressure and Holding time Specific wear rate
    Suresha et al. (2019) [66] Polyaryletherketone composites Taguchi Noramal load, Filler content and Sliding velosity and distance Specific wear rate and CoF
    Stalin et al. (2019) [64] Aluminium composites ANN integrated teaching learningbased optimization algorithm Reinforcement, Sliding speed, Load and Sliding distance Wear rate
    Gajalakshmi et al. (2019) [14] Aluminium alloy (AA6026) hybrid GRA with a RSM Load, Speed of pin and Track diameter Wear, CoF and Frictional force
     | Show Table
    DownLoad: CSV

    Table 2.  Literature review (continue)

    Author
    (Year)
    Materials Optimization Technique Process parameter Wear responses
    Ming-Der et al. (2020) [37] Zr doped DLC coating The GAANFIS method Bias, Pulse frequency, CH4, Sputtering distance and C/Ze current Wear rate
    Sahoo (2009) [57] Ni-P coating Taguchi Bath temperature, Concentration of reducuing agent, Concentration of rource of nickel and Annealing temperature Wear depth
    Baradeswaran et al. (2013) [4] Al-Al2O3 composites Taguchi integrated with RSM Applied load and Sliding distnace Wear mass loss and CoF
    Rana et al. (2014) [53] AA5083/10 Wt. Sicp composite Taguchi Load, Sliding speed and distance Wear rate
    Baradeswaran et al. (2014) [5] Aluminium and B4C composites RSM Load, Sliding speed and distance Wear mass loss
    Chang et al. (2015) [11] UHMWPE composites RSM Filler loading, Applied load and Sliding speed Wear rate and CoF
    Saravanan et al. (2015) [60] TiN coating RSM Load, Sliding velosity and distance Wear mass loss and CoF
    Saravanan et al. (2016) [59] TiN coating RSM Load, Sliding velosity and distance Wear mass loss, CoF, Ra, Wear depth and Hardness
     | Show Table
    DownLoad: CSV

    Table 3.  Literature review (continue)

    Author
    (Year)
    Materials Optimization Technique Process parameter Wear responses
    Saravanan et al. (2016) [58] ${\gamma}$-irradiated Ti alloy against TiN coating RSM Load, Sliding velosity and distance Wear mass loss of TiN coating and counterbody
    Girish et al. (2016) [15] Hybrid metal matrix composite (Magnesium alloyAZ91) Taguchi Composition, Sliding velosity and distance Wear rate
    Achuthamenon Sylajakumari et al. (2018) [1] AA6063/ SiC composites Taguchi Load, Sliding speed and distance CoF and Wear rate
    Natrayan et al. (2020) [38] AA6061/ Al2O3/ SiC composite Taguchi Load, Sliding speed and distance Wear rate and CoF
    Sathish et al. (2019) [61] Mg-(5.6Ti +3Al)2.5B4C composites Taguchi Load, Sliding velosity and distance Wear rate
    Bramaramba et al. (2020) [8] Ferritic ductile cast iron Taguchi Load, Time, Grade and Heat treatment Wear mass loss and Hardness
    Premnath (2020) [50] Al-SiC nanocomposites Desirability approach Number of passes, Rotationa a nd Transverse speed Tensile strength, Microhardness and Wear loss
    Rajmohan et al. (2020) [52] Magnesiumsilicon composites Grey-Fuzzy algorithm integrated with Taguchi Load, Speed, Distance and Weight of SiC Wear rate and CoF
     | Show Table
    DownLoad: CSV

    Table 4.  Literature review (continue)

    Author
    (Year)
    Materials Optimization Technique Process parameter Wear responses
    Khatkar et al. (2021) [22] AZ91D-SiC -Gr composites Taguchi SiC and Graphite percentage, ]Applied load, Sliding speed and distance Wear rate
    Rao et al. (2021) [55] Al6061/WC composites A hybrid Gray relational analysis integrated with teaching learningbased optimization Volumetric percentage of WC, Load, Sliding velosity and distance Wear rate and CoF
    Kumar et al. (2021) [30] Cr-(CrN/ TiN) coating Taguchi Load, Sliding velosity and distance and Coolant type Ra, CoF and Wear mass loss
    Patnaik et al. (2021) [40] AlCrN coating RSM Load, Sliding velosity and distance Ra, CoF, Disc mass loss, Wear depth and Hardness
    Patnaik et al. (2021) [41] Silver alloyed a-C coating RSM Load, Sliding velosity and distance Ra, CoF, Disc mass loss, and Hardness
    Kumar et al. (2021) [31] TiAlN coating RSM Cutting speed, Feed rate and Depth of cut Ra and Tool wear rate
     | Show Table
    DownLoad: CSV

    Table 5.  Wear parameters and its levels

    Wear parameter Symbol Level Value
    Temperature (in $ ^{\circ} $C) T 4 25,100,200,300
    Sliding velocity (in m/s) $ S_v $ 4 0.01, 0.05, 0.1, 0.15
    Applied load (in N) L 4 5, 10, 15, 20
    Sliding distance (in m) $ S_d $ 4 500, 1000, 1500, 2000
     | Show Table
    DownLoad: CSV

    Table 6.  Experimental results (initial decision matrix)

    Experimental run
    (Alternative, WP)
    Wear parameters Wear responses (Criteria, WR)
    T $S_v$ L $S_d$ ${WR}_1$ (WR, × ${10}^{-8}$ ${mm}^3Nm^{-1}$) ${WR}_2$ (CoF) ${WR}_3$ (Ra, μm) ${WR}_4$ (WD, μm) ${WR}_5$ (Hv)
    ${WP}_1$ 25 0.01 5 500 8.45 0.58 7.8 2.71 1746
    ${WP}_2$ 25 0.05 10 1000 8.31 0.56 7.1 2.87 1698
    ${WP}_3$ 25 0.1 15 1500 9.71 0.55 6.7 2.98 1648
    ${WP}_4$ 25 0.15 20 2000 10.89 0.53 5.9 3.68 845
    ${WP}_5$ 100 0.01 10 1500 6.71 0.49 5.1 0.73 2576
    ${WP}_6$ 100 0.05 5 2000 5.67 0.51 5.4 0.67 2781
    ${WP}_7$ 100 0.1 20 500 6.77 0.56 7.3 1.63 2409
    ${WP}_8$ 100 0.15 15 1000 7.2 0.52 6.4 0.84 2384
    ${WP}_9$ 200 0.01 15 2000 8.54 0.46 3.9 1.47 2127
    ${WP}_{10}$ 200 0.05 20 1500 8.24 0.57 7.5 2.14 1898
    ${WP}_{11}$ 200 0.1 5 1000 6.72 0.59 8.1 0.89 2317
    ${WP}_{12}$ 200 0.15 10 500 7.83 0.61 8.7 0.98 2235
    ${WP}_{13}$ 300 0.01 20 1000 9.37 0.64 8.9 3.37 1107
    ${WP}_{14}$ 300 0.05 15 500 8.71 0.68 9.1 2.93 1283
    ${WP}_{15}$ 300 0.1 10 2000 9.12 0.67 8.7 3.29 997
    ${WP}_{16}$ 300 0.15 5 1500 8.5 0.65 8.4 2.79 1321
     | Show Table
    DownLoad: CSV

    Table 7.  Pairwise comparison vector for best to other criteria

    Best to Others $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    Best criteria: Wear rate ($ {WR}_1 $) 1 2 7 5 3
     | Show Table
    DownLoad: CSV

    Table 8.  Pairwise comparison vector for other to worst criteria

    Others to the worst criteria Worst criteria: Surface roughness (Ra)
    ${WR}_1$ 8
    ${WR}_2$ 4
    ${WR}_3$ 1
    ${WR}_4$ 3
    ${WR}_5$ 5
     | Show Table
    DownLoad: CSV

    Table 9.  Weight of criteria and inconsistency rate

    Criteria $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    Weights 0.427 0.253 0.050 0.101 0.169
    Ksi* 0.07
     | Show Table
    DownLoad: CSV

    Table 10.  Normalized decision matrix

    Alternative $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    $ {WP}_1 $ 0.467 0.455 0.250 0.322 0.465
    $ {WP}_2 $ 0.494 0.545 0.385 0.269 0.441
    $ {WP}_3 $ 0.226 0.591 0.462 0.233 0.415
    $ {WP}_4 $ 0.000 0.682 0.615 0.000 0.000
    $ {WP}_5 $ 0.801 0.864 0.769 0.980 0.894
    $ {WP}_6 $ 1.000 0.773 0.712 1.000 1.000
    $ {WP}_7 $ 0.789 0.545 0.346 0.681 0.808
    $ {WP}_8 $ 0.707 0.727 0.519 0.944 0.795
    $ {WP}_9 $ 0.450 1.000 1.000 0.734 0.662
    $ {WP}_10 $ 0.508 0.500 0.308 0.512 0.544
    $ {WP}_11 $ 0.799 0.409 0.192 0.927 0.760
    $ {WP}_12 $ 0.586 0.318 0.077 0.897 0.718
    $ {WP}_13 $ 0.291 0.182 0.038 0.103 0.135
    $ {WP}_14 $ 0.418 0.000 0.000 0.249 0.226
    $ {WP}_15 $ 0.339 0.045 0.077 0.130 0.079
    $ {WP}_16 $ 0.458 0.136 0.135 0.296 0.246
     | Show Table
    DownLoad: CSV

    Table 11.  Weighted normalized decision matrix

    Alternative $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    $ {WP}_1 $ 0.627 0.368 0.062 0.134 0.247
    $ {WP}_2 $ 0.638 0.391 0.069 0.129 0.243
    $ {WP}_3 $ 0.524 0.403 0.073 0.125 0.239
    $ {WP}_4 $ 0.427 0.426 0.080 0.101 0.169
    $ {WP}_5 $ 0.769 0.472 0.088 0.201 0.320
    $ {WP}_6 $ 0.854 0.449 0.085 0.203 0.338
    $ {WP}_7 $ 0.764 0.391 0.067 0.170 0.305
    $ {WP}_8 $ 0.729 0.437 0.075 0.197 0.303
    $ {WP}_9 $ 0.619 0.506 0.099 0.176 0.281
    $ {WP}_10 $ 0.644 0.380 0.065 0.153 0.261
    $ {WP}_11 $ 0.768 0.357 0.059 0.195 0.297
    $ {WP}_12 $ 0.677 0.334 0.053 0.192 0.290
    $ {WP}_13 $ 0.551 0.299 0.052 0.112 0.192
    $ {WP}_14 $ 0.605 0.253 0.050 0.127 0.207
    $ {WP}_15 $ 0.572 0.265 0.053 0.114 0.182
    $ {WP}_16 $ 0.623 0.288 0.056 0.131 0.210
     | Show Table
    DownLoad: CSV

    Table 12.  Border approximation area matrix (BAA)

    Criteria $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    G 0.641 0.369 0.067 0.150 0.250
     | Show Table
    DownLoad: CSV

    Table 13.  Distance of alternative from BAA

    Alternative $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    $ {WP}_1 $ -0.014 -0.001 -0.004 -0.016 -0.003
    $ {WP}_2 $ -0.003 0.022 0.002 -0.021 -0.007
    $ {WP}_3 $ -0.117 0.034 0.006 -0.025 -0.011
    $ {WP}_4 $ -0.214 0.057 0.014 -0.048 -0.081
    $ {WP}_5 $ 0.128 0.103 0.021 0.051 0.070
    $ {WP}_6 $ 0.213 0.080 0.018 0.053 0.088
    $ {WP}_7 $ 0.123 0.022 0.000 0.021 0.055
    $ {WP}_8 $ 0.088 0.068 0.009 0.047 0.053
    $ {WP}_9 $ -0.021 0.137 0.033 0.026 0.031
    $ {WP}_10 $ 0.003 0.011 -0.002 0.003 0.011
    $ {WP}_11 $ 0.127 -0.012 -0.007 0.045 0.047
    $ {WP}_12 $ 0.037 -0.035 -0.013 0.042 0.040
    $ {WP}_13 $ -0.089 -0.070 -0.015 -0.038 -0.058
    $ {WP}_14 $ -0.035 -0.116 -0.017 -0.023 -0.043
    $ {WP}_15 $ -0.069 -0.104 -0.013 -0.035 -0.068
    $ {WP}_16 $ -0.018 -0.081 -0.010 -0.018 -0.040
     | Show Table
    DownLoad: CSV

    Table 14.  Criteria function and ranking of alternative

    Alternative Criteria function ($ S_i $) Rank
    $ {WP}_1 $ -0.038 10
    $ {WP}_2 $ -0.006 9
    $ {WP}_3 $ -0.113 11
    $ {WP}_4 $ -0.273 15
    $ {WP}_5 $ 0.373 2
    $ {WP}_6 $ 0.452 1
    $ {WP}_7 $ 0.222 4
    $ {WP}_8 $ 0.266 3
    $ {WP}_9 $ 0.205 5
    $ {WP}_10 $ 0.026 8
    $ {WP}_11 $ 0.201 6
    $ {WP}_12 $ 0.071 7
    $ {WP}_13 $ -0.270 14
    $ {WP}_14 $ -0.234 13
    $ {WP}_15 $ -0.289 16
    $ {WP}_16 $ -0.168 12
     | Show Table
    DownLoad: CSV

    Table 15.  Different Scenario of criteria weight for sensitivity analysis

    Scenarios Criteria weight
    $ {WR}_1 $ $ {WR}_2 $ $ {WR}_3 $ $ {WR}_4 $ $ {WR}_5 $
    S1 0.500 0.125 0.125 0.125 0.125
    S2 0.125 0.500 0.125 0.125 0.125
    S3 0.125 0.125 0.500 0.125 0.125
    S4 0.125 0.125 0.125 0.500 0.125
    S5 0.125 0.125 0.125 0.125 0.500
    S6 0.200 0.200 0.200 0.200 0.200
     | Show Table
    DownLoad: CSV

    Table 16.  Value of Spearman's rank correlation coefficient between MCDM methods

    MCDM methods MABAC TOPSIS MOORA VIKOR TODIM WASPAS
    MABAC 1.000 0.974 0.973 0.974 1.000 0.977
    TOPSIS 0.974 1.000 1.000 1.000 1.000 0.997
    MOORA 0.973 1.000 1.000 1.000 1.000 0.997
    VIKOR 0.974 1.000 1.000 1.000 1.000 0.997
    TODIM 1.000 1.000 1.000 1.000 1.000 0.997
    WASPAS 0.977 0.997 0.997 0.997 0.997 1.000
     | Show Table
    DownLoad: CSV

    Table 17.  Initial decision matrix for selection of optimal wear parameters for AlCrN coated stainless steel [49]

    Alternative Wear parameters Wear responses (Criteria)
    Load Sliding velocity Sliding distance Ra, in $\mu$m CoF Disc mass loss (Ml, in mg) WD (Wd-, in $\mu$m) Microhardness (Hv)
    ${WP}_1$ 10 10 2000 1.5 0.27 52.8 5 1441
    ${WP}_2$ 15 20 1000 3.6 0.58 39.7 4.6 421
    ${WP}_3$ 10 30 1000 6.6 0.76 22.5 1.2 902
    ${WP}_4$ 10 10 1000 2.2 0.4 21.8 2.8 1201
    ${WP}_5$ 15 30 1500 5.8 0.63 48 4.9 274
    ${WP}_6$ 15 20 2000 3.1 0.44 67.8 8.6 335
    ${WP}_7$ 10 20 1500 2.7 0.52 20.4 2.9 1007
    ${WP}_8$ 10 30 2000 5.7 0.64 27 3.3 821
    ${WP}_9$ 15 10 1000 1.3 0.26 64.1 8.4 651
    ${WP}_10$ 5 30 1000 6.9 0.73 9.7 1.5 1435
    ${WP}_11$ 5 20 2000 4.2 0.6 17.6 2.2 1777
    ${WP}_12$ 10 20 1500 2.7 0.52 21.3 3.1 994
    ${WP}_13$ 5 10 1500 2.6 0.38 19.4 1.8 2021
    ${WP}_14$ 5 20 1000 5 0.65 6.9 1.1 1549
    ${WP}_15$ 10 20 1500 2.8 0.49 21.3 3.1 1001
     | Show Table
    DownLoad: CSV

    Table 18.  Criteria function and ranking of alternative

    Alternative Criteria function ($ S_i $) Rank
    $ {WP}_1 $ 0.0594 9
    $ {WP}_2 $ -0.1347 12
    $ {WP}_3 $ -0.0636 11
    $ {WP}_4 $ 0.1960 4
    $ {WP}_5 $ -0.2922 14
    $ {WP}_6 $ -0.3116 15
    $ {WP}_7 $ 0.1324 5
    $ {WP}_8 $ -0.0609 10
    $ {WP}_9 $ -0.1414 13
    $ {WP}_10 $ 0.0971 8
    $ {WP}_11 $ 0.2010 3
    $ {WP}_12 $ 0.1233 7
    $ {WP}_13 $ 0.3284 1
    $ {WP}_14 $ 0.2114 2
    $ {WP}_15 $ 0.1288 6
     | Show Table
    DownLoad: CSV

    Table 19.  Initial decision matrix for selection of optimal wear parameters for DLC coated tungsten carbide [78]

    Alternative Wear parameters Wear responses (Criteria)
    Depth of cut (DoC, in mm) Cutting speed (Vc, in m/min) Feed rate (f, in mm /rev) Temperature in cutting zone (Tc, in $^{\circ}$C) Ra, in $\mu$m Flank wear (Wf, in $\mu$m)
    ${WP}_1$ 0.375 480 0.125 72.8 0.565 96.25
    ${WP}_2$ 0.375 600 0.25 80 0.491 100.67
    ${WP}_3$ 0.375 720 0.375 79.6 0.64 113.33
    ${WP}_4$ 0.635 480 0.25 79.3 0.389 85.33
    ${WP}_5$ 0.635 600 0.375 133.6 0.558 86.25
    ${WP}_6$ 0.635 720 0.125 112.2 0.319 94.25
    ${WP}_7$ 0.895 480 0.375 160.4 0.482 96.25
    ${WP}_8$ 0.895 600 0.125 167.7 0.46 103.75
    ${WP}_9$ 0.895 720 0.25 202 0.467 115.42
     | Show Table
    DownLoad: CSV

    Table 20.  Criteria function and ranking of alternative

    Alternative Criteria function ($S_i$) BWM-MABAC Ranking TOPSIS Ranking [78]
    ${WP}_1$ 0.040 3 4
    ${WP}_2$ 0.032 4 3
    ${WP}_3$ -0.143 8 5
    ${WP}_4$ 0.408 1 1
    ${WP}_5$ 0.007 5 6
    ${WP}_6$ 0.379 2 2
    ${WP}_7$ -0.064 7 7
    ${WP}_8$ 0.006 6 8
    ${WP}_9$ -0.381 9 9
     | Show Table
    DownLoad: CSV

    Table 21.  Initial decision matrix for selection of optimal wear parameters for AA6063/SiCp composite [31]

    Alternative Wear parameters Wear responses (Criteria)
    Load (L, in N) Sliding distance ($S_d$, in m) Wt ($\%$) of SiC Wear rate (WR, in $10^{-3}$ ${mm}^3/m$) Frictional force (FF, in N) Specific wear rate (SWR, in $10^{-3}$ ${mm}^3/m$)
    ${WP}_1$ 20 523 3.5 11.03 12.01 0.5515
    ${WP}_2$ 20 1046 7 4.486 3.56 0.2243
    ${WP}_3$ 20 1570 10.5 2.83 2.15 0.1415
    ${WP}_4$ 30 523 7 9.311 4.15 0.3103
    ${WP}_5$ 30 1046 10.5 5.194 8.17 0.1731
    ${WP}_6$ 30 1570 3.5 5.34 13.22 0.178
    ${WP}_7$ 40 523 10.5 10.016 17.56 0.2504
    ${WP}_8$ 40 1046 3.5 7.58 19.05 0.1895
    ${WP}_9$ 40 1570 7 5.427 6.61 0.1356
     | Show Table
    DownLoad: CSV

    Table 22.  Criteria function and ranking of alternative

    Alternative Criteria function ($S_i$) BWM-MABAC Ranking GRA-PCA Ranking [31]
    ${WP}_1$ 0.168 9 9
    ${WP}_2$ 0.941 2 3
    ${WP}_3$ 1.133 1 1
    ${WP}_4$ 0.521 7 7
    ${WP}_5$ 0.912 4 4
    ${WP}_6$ 0.876 5 5
    ${WP}_7$ 0.463 8 8
    ${WP}_8$ 0.681 6 6
    ${WP}_9$ 0.933 3 2
     | Show Table
    DownLoad: CSV
  • [1] P. Achuthamenon SylajakumariR. Ramakrishnasamy and G. Palaniappan, Taguchi grey relational analysis for multi-response optimization of wear in co-continuous composite, Materials, 11 (2018), 1743. 
    [2] I. K. AliyuM. U. AzamD. U. Lawal and M. A. Samad, Optimization of SiC Concentration and Process Parameters for a Wear-Resistant UHMWPE Nancocomposite, Arabian J. Sci. Eng., 45 (2020), 849-860. 
    [3] X. BaiJ. Li and L. Zhu, Structure and properties of TiSiN/Cu multilayer coatings deposited on Ti6Al4V prepared by arc ion plating, Surf. Coat. Technol., 372 (2019), 16-25. 
    [4] A. BaradeswaranA. Elayaperumal and R. F. Issac, A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using Taguchi technique, Proceed. Eng., 64 (2013), 973-982. 
    [5] A. BaradeswaranS. C. VettivelA. E. PerumalN. Selvakumar and R. F. Issac, Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites, Mater. Des., 63 (2014), 620-632. 
    [6] F. BehrooziS. M. H. Hosseini and S. S. Sana, Teaching-learning-based genetic algorithm (TLBGA): An improved solution method for continuous optimization problems, Int. J. Sys. Assur. Eng. Manag., 12 (2021), 1362-1384. 
    [7] A. K. BirjandiF. AkhyaniR. Sheikh and S. S. Sana, Evaluation and selecting the contractor in bidding with incomplete information using MCGDM method, Soft Compt., 23 (2019), 10569-10585. 
    [8] V. Bramaramba and S. Sen, Optimization study on sliding wear characteristics and heat-treatment conditions of different grades of ferritic ductile cast iron, Trans. Indian Inst. Metal, 73 (2020), 1131-1146. 
    [9] W. K. Brauers and E. K. Zavadskas, The MOORA method and its application to privatization in a transition economy, Control Cybern., 35 (2006), 445-469. 
    [10] S. ChakrabortyS. S. Dandge and S. Agarwal, Non-traditional machining processes selection and evaluation: A rough multi-attributive border approximation area comparison approach, Comput. Indus. Eng., 64 (2020), 106201. 
    [11] B. P. ChangH. AkilR. B. Nasir and A. Khan, Optimization on wear performance of UHMWPE composites using response surface methodology, Tribol. Int., 88 (2015), 525-262. 
    [12] C. DangY. YaoT. OlugbadeJ. Li and L. Wang, Effect of multi-interfacial structure on fracture resistance of composite TiSiN/Ag/TiSiN multilayer coating, Thin Solid Films, 653 (2018), 107-112. 
    [13] G. G. FuentesE. AlmandozR. PierruguesR. MartínezR. J. RodríguezJ. Caro and M. Vilaseca, High temperature tribological characterisation of TiAlSiN coatings produced by cathodic arc evaporation, Surf. Coat. Technol., 205 (2010), 1368-1373. 
    [14] K. GajalakshmiN. Senthilkumar and B. Prabu, Multi-response optimization of dry sliding wear parameters of AA6026 using hybrid gray relational analysis coupled with response surface method, Measur. Control, 52 (2019), 540-553. 
    [15] B. M. GirishB. M. Satish and S. Sarapure, Optimization of wear behavior of magnesium alloy AZ91 hybrid composites using taguchi experimental design, Metall. Mater. Trans. A, 47 (2016), 3193-3200. 
    [16] W. J. GongQ. LiL. Yin and H. C. Liu, Undergraduate teaching audit and evaluation using an extended MABAC method under q-rung orthopair fuzzy environment, Int. J. Intell. Sys., 35 (2020), 1912-1933. 
    [17] J. GuL. LiM. AiY. XuY. XuG. Li and P. Zhang, Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings, Surf. Coat. Technol., 402 (2020), 126270. 
    [18] G. HaseliR. Sheikh and S. S. Sana, Base-criterion on multi-criteria decision-making method and its applications, Int. J. Manag. Sci. Eng. Manag., 15 (2020), 79-88. 
    [19] J. HuangZ. S. Li and H. C. Liu, New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method, Reliab. Eng. Syst. Saf., 167 (2017), 302-309. 
    [20] C. L. Hwang and K. Yoon, Multiple attribute decision making: A state of the art survey, Lect. Notes Econ.Mat. Syst., 186 (1981).
    [21] N. Kaushik and S. Singhal, Hybrid combination of Taguchi-GRA-PCA for optimization of wear behavior in AA6063/SiCp matrix composite, Produc. Manuf. Res., 6 (2020), 171-189. 
    [22] S. K. KhatkarR. VermaS. S. KharbA. Thakur and R. Sharma, Optimization and effect of reinforcements on the sliding wear behavior of self-lubricating AZ91D-SiC-Gr Hybrid composites, Silicon, 13 (2021), 1461-1473. 
    [23] S. Kumar, S. R. Maity and L. Patnaik, Wear assessment of Cr2O3-/TiAlN-coated DAC-10 tool steel against steel and Al2O3 counterbodies, Int.J.Appl. Ceram. Technol., (2021).
    [24] S. Kumar, S. R. Maity and L. Patnaik, Morphology and wear behavior of monolayer TiAlN and composite AlCrN/TiAlN coated plasma nitrided DAC-10 tool steel, Arabian J. Sci. Eng., (2022).
    [25] S. KumarS. R. Maity and L. Patnaik, Friction and tribological behavior of bare nitrided, TiAlN and AlCrN coated MDC-K hot work tool steel, Ceram. Int., 46 (2020), 17280-17294. 
    [26] S. Kumar, S. R. Maity and L. Patnaik, Effect of annealing on structural, mechanical and tribological properties of Cr-(CrN/TiAlN) coating, Adv. Mater. Proces. Technol., (2021), 1–14.
    [27] S. Kumar, S. R. Maity and L. Patnaik, Mechanical and scratch behaviour of TiAlN coated and 3D printed H13 tool steel, Adv. Mater. Proces. Technol., (2021), 1–15.
    [28] S. KumarS. R. Maity and L. Patnaik, Effect of heat treatment and TiN coating on AISI O1 cold work tool steel, Mater. Today: Proceed., 26 (2020), 685-688. 
    [29] S. Kumar, S. R. Maity and L. Patnaik, Relation between mechanical and tribological properties of plasma nitrided and TiCrN coated YXR-7 tool steel, In AIP Conference Proceedings, Indore, India, (2021), 020033.
    [30] S. KumarS. R. Maity and L. Patnaik, Effect of tribological process parameter on the wear and frictional behaviour of Cr-(CrN/TiN) composite coating: An experimental and analytical study, Ceram. Int., 47 (2021), 16018-16028. 
    [31] S. Kumar, S. R. Maity and L. Patnaik, Application of box-behnken method for multi-response optimization of turning parameters for DAC-10 hot work tool steel, In Recent Advances in Mechanical Engineering, Springer Singapore, (2021), 407–415. doi: 10.1007/978-981-15-7711-6_42.
    [32] S. KumarS. R. Maity and L. Patnaik, A comparative study on wear behaviors of hot work and cold work tool steel with same hardness under dry sliding tribological test, Mater. Today: Proceed., 44 (2021), 949-954. 
    [33] S. Kumar, L. Patnaik, S. M. Shafi and S. R. Maity, Relative effect of wear parameters on the wear behavior of TiAlN coated tool steel and parametric optimization using MCDM method, Advances in Materials and Processing Technologies, (2022), 1–22.
    [34] S. Z. Luo and W. Z. Liang, Optimization of roadway support schemes with likelihood-based MABAC method, Appl. Soft Comput., 80 (2019), 80-92. 
    [35] S. Z. Luo and L. N. Xing, A hybrid decision making framework for personnel selection using BWM, MABAC and PROMETHEE, Int. J. Fuzzy Syst., 21 (2019), 2421-2434. 
    [36] H. MaQ. MiaoG. ZhangW. LiangY. WangZ. Sun and H. Lin, The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating, Ceram. Int., 47 (2021), 12583-12591. 
    [37] J. E. A. N. Ming-DerL. I. U. Cheng-WuY. A. N. G. Pao-Hua and H. O. Wen-Hsien, Optimization of wear behavior of DLC coatings through optimization of deposition conditions, Mater. Sci., 26 (2020), 269-280. 
    [38] L. Natrayan and M. S. Kumar, Optimization of wear behaviour on AA6061/Al2O3/SiC metal matrix composite using squeeze casting technique-Statistical analysis, Mater. Todays: Proceed., 27 (2020), 306-310. 
    [39] D. Pamučar and G. Ćirović, The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC), Expert Sys. Appl., 42 (2015), 3016-3028. 
    [40] L. PatnaikS. R. Maity and S. Kumar, Modeling of wear parameters and multi-criteria optimization by box-behnken design of AlCrN thin film against gamma-irradiated Ti6Al4V Counterbody, Ceram. Int., 47 (2021), 20494-20511. 
    [41] L. Patnaik, S. R. Maity and S. Kumar, Evaluation of gamma irradiated Ti6Al4V and silver alloyed aC coatings as friction pair via response surface methodology, Adv. Mater. Process. Technol., (2021), 1–18.
    [42] L. Patnaik, S. R. Maity and S. Kumar, Lubricated sliding of CFRPEEK/AlCrN film tribo-pair and its effect on the mechanical properties and structural integrity of the AlCrN film, Mater. Chem. Phy., (2021), 124980.
    [43] L. Patnaik, S. R. Maity and S. Kumar, Evaluation of crack resistance and adhesive energy of AlCrN and Ag doped aC films deposited on chrome nitrided 316 LVM stainless steel, Adv. Mater. Proces. Technol., (2021), 1–22.
    [44] L. Patnaik, S. R. Maity and S. Kumar, Comparative study on the structural make-up and mechanical behavior of silicon and silver doped amorphous carbon films, Silicon, (2022), 1–18.
    [45] L. PatnaikS. R. Maity and S. Kumar, Comprehensive structural, nanomechanical and tribological evaluation of silver doped DLC thin film coating with chromium interlayer (Ag-DLC/Cr) for biomedical application, Ceram. Int., 46 (2020), 22805-22818. 
    [46] L. PatnaikS. R. Maity and S. Kumar, Mechanical and tribological assessment of composite AlCrN or aC: Ag-based thin films for implant application, Ceram. Int., 47 (2021), 6736-6752. 
    [47] L. PatnaikS. R. Maity and S. Kumar, Effect of lubricated sliding wear against CFRPEEK on the nanomechanical properties of Ag alloyed Cr/DLC thin film, J. Mech. Behav. Biomed. Mater., 118 (2021), 104478. 
    [48] L. PatnaikS. R. Maity and S. Kumar, DLC/CrN or AlCrN/CrN composite films: The better candidate in terms of anti-Wear performance and lesser ion release in hip implant, Mater. Today: Proceed., 44 (2021), 1214-1220. 
    [49] L. Patnaik, S. R. Maity and S. Kumar, Structural and corrosion study of aC film with Ti, Cr and Ni interlayers, In AIP Conference Proceedings, Indore, India, (2021), 020073.
    [50] A. Premnath, Optimization of the process parameters on the mechanical and wear properties of Al-SiC nano-composites fabricated by friction stir processing using desirability approach, Silicon, 12 (2020), 665-675. 
    [51] J. U. PrakashS. AnanthG. Sivakumar and T. V. Moorthy, Multi-objective optimization of wear parameters for aluminium matrix composites (413/B4C) using grey relational analysis, Mater. Today: Proceed., 5 (2018), 7207-7216. 
    [52] T. RajmohanS. Vijayabhaskar and D. Vijayan, Multiple performance optimization in wear characteristics of Mg-SiC nanocomposites using grey-fuzzy algorithm, Silicon, 12 (2020), 1177-1186. 
    [53] R. S. RanaR. PurohitA. Kumar Sharma and S. Rana, Optimization of wear performance of Aa 5083/10 Wt. Sicp composites using Taguchi method, Proced. Mater. Sci., 6 (2013), 503-511. 
    [54] R. RanaR. S. Walia and Q. Murtaza, Characterization and parametric optimization of performance parameters of DLC-Coated tungsten carbide (WC) tool using TOPSIS, Coatings, 11 (2021), 760. 
    [55] T. B. Rao and G. R. Ponugoti, Characterization, prediction, and optimization of Dry sliding wear behaviour of Al6061/WC composites, transactions of the indian institute of metals, Silicon, 74 (2021), 159-178. 
    [56] J. Rezaei, Best-worst multi-criteria decision-making method: Some properties and a linear model, Omega, 64 (2016), 126-130. 
    [57] P. Sahoo, Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method, Mater. Des., 30 (2009), 1341-1349. 
    [58] I. Saravanan and A. E. Perumal, Wear behavior of ${\gamma}$-irradiated Ti6Al4V alloy sliding on TiN deposited steel surface, Tribol. Int., 93 (2016), 451-463. 
    [59] I. SaravananA. E. PerumalR. F. IssacS. C. Vettivel and A. Devaraju, Optimization of wear parameters and their relative effects on TiN coated surface against Ti6Al4V alloy, Mater. Des., 92 (2016), 23-35. 
    [60] I. SaravananA. E. PerumalS. C. VettivelN. Selvakumar and A. Baradeswaran, Optimizing wear behavior of TiN coated SS 316L against Ti alloy using Response Surface Methodology, Mater. Des., 67 (2015), 469-482. 
    [61] S. Sathish, V. Anandakrishnan and G. Manoj, Optimization of wear parameters of Mg-(5.6 Ti+ 3Al)-2.5 B4C composite, Indus. Lubr. Tribol., 27 (2019).
    [62] G. SinghS. L. I. Chan and N. Sharma, Parametric study on the dry sliding wear behaviour of AA6082-T6/TiB 2 in situ composites using response surface methodology, J. Brazilian Soci. Mech. Sci. Eng., 40 (2018), 1-12. 
    [63] Y. SinghP. SinghA. SharmaP. ChoudharyA. Singla and N. K. Singh, Optimization of wear and friction characteristics of Phyllanthus Emblica seed oil based lubricant using response surface methodology, Egyptian J. Petrol., 27 (2018), 11445-1155. 
    [64] B. StalinP. R. KumarM. RavichandranM. S. Kumar and M. Meignanamoorthy, Optimization of wear parameters using Taguchi grey relational analysis and ANN-TLBO algorithm for silicon nitride filled AA6063 matrix composites, Mater. Res. Express, 6 (2019), 106590. 
    [65] B. StalinP. R. KumarM. Ravichandran and S. Saravanan, Optimization of wear parameters and their relative effects on stir cast AA6063-Si3N4 Composite, Mater. Res. Express, 10 (2018), 106502. 
    [66] B. SureshaR. S. ShenoyR. BhatP. K. Sohan and R. Hemanth, Optimization of wear behaviour of boron nitride filled polyaryletherketone composites by Taguchi approach, Mater. Res. Express, 19 (2019), 085329. 
    [67] L. I. TongC. C. Chen and C. H. Wang, Optimization of multi-response processes using the VIKOR method, Int. J. Adv. Manuf. Technol., 31 (2007), 1049-1057. 
    [68] J. Wang and A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers, Curr. Opin. Solid State Mater. Sci., 15 (2011), 20-28. 
    [69] J. WangG. WeiC. Wei and Y. Wei, MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment, Defence Technol., 16 (2020), 208-216. 
    [70] G. WeiY. HeF. LeiJ. WuC. Wei and Y. Guo, Green supplier selection with an uncertain probabilistic linguistic MABAC method, J. Intell. Fuzzy Syst., 39 (2020), 3125-3136. 
    [71] G. WeiC. WeiJ. Wu and H. Wang, Supplier selection of medical consumption products with a probabilistic linguistic MABAC method, Int. J. Environ. Res. Public Health, 16 (2019), 5082. 
    [72] P. WiecinskiJ. SmolikH. GarbaczJ. BonarskiA. Mazurkiewicz and K. J. Kurzydlowski, Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V, Surf. Coat. Technol., 309 (2017), 709-718. 
    [73] Y. X. XueJ. X. YouX. D. Lai and H. C. Liu, An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information, Appl. Soft Comput., 38 (2016), 703-713. 
    [74] Y. X. Xue, J. X. You, X. D. Lai, H. C. Liu, L. A. Puška, S. Kozarević, Ž. Stević and J. Stovrag, A new way of applying interval fuzzy logic in group decision making for supplier selection, Econ. Comput. Econ. Cybern. Stud. Res., 52 (2018).
    [75] E. ZarafshanS. GholamiR. Sheikh and S. S. Sana, Resource planning system for organisations-a soft computing approach, Int. J. Serv. Econ. Manag., 12 (2021), 272-293. 
    [76] E. K. ZavadskasZ. TurskisJ. Antucheviciene and A. Zakarevicius, Optimization of weighted aggregated sum product assessment, Elektronika ir Elektrotechnika, 122 (2012), 3-6. 
    [77] K. ZhangL. S. WangG. H. YueY. Z. ChenD. L. PengZ. B. Qi and Z. C. Wang, Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings, Surf. Coat. Technol., 205 (2011), 3588-3595. 
    [78] D. ZindaniS. R. MaityS. Bhowmik and S. Chakraborty, A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis, Int. J. Mater. Res., 108 (2017), 345-354. 
  • 加载中

Figures(6)

Tables(22)

SHARE

Article Metrics

HTML views(2489) PDF downloads(389) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return