• Previous Article
    Cooperative and noncooperative R&D in duopoly manufacturers with a common supplier
  • JIMO Home
  • This Issue
  • Next Article
    The effect of rebate value and selling price-dependent demand for a four-level production manufacturing system
doi: 10.3934/jimo.2022067
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A new switching time optimization technique for multi-switching systems

1. 

Shanghai University, Shanghai, 200444, China

2. 

Sunway University, Selangor, 473000, Malaysia

*Corresponding author: Changjun Yu

Received  January 2022 Revised  March 2022 Early access April 2022

Fund Project: This work is supported by National Natural Science Foundation of China(NSFC), Grant No.11871039, Science and Technology Commission of Shanghai Municipality(STCSM), Grant No. 20JC1413900 and Australian Research Council Discovery Grant

For a multi-switching system, it consists of multiple parallel switching systems. The optimal control problem controlled by a multi-switching system is to determine the optimal time sequence for each of the parallel switching systems. The time-scaling transformation is a well-known switching time optimization approach which has been widely used in various problem settings. However, the time-scaling transformation requires that these parallel switching systems have the same number of subsystems and are designed to switch simultaneously. Thus, it is not applicable for solving optimal control problems of general multi-switching systems. This paper presents a new technique for optimizing the switching times of multi-switching systems.

Citation: Xi Zhu, Changjun Yu, Kok Lay Teo. A new switching time optimization technique for multi-switching systems. Journal of Industrial and Management Optimization, doi: 10.3934/jimo.2022067
References:
[1]

F. Bencherki, S. Türkay and H. Akay, Deadbeat observer based switched linear system identification, preprint, 2021, arXiv: 2107.14571.

[2]

Z. Geng and Z. Sun, Sub-optimal aggregation of switched linear systems, Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, 2163–2166.

[3]

X. Guo and H. P. Ren, A switching control strategy based on switching system model of three-phase vsr under unbalanced grid conditions, IEEE Transactions on Industrial Electronics, 68 (2021), 5799-5809. 

[4]

J. JinJ. P. RamirezS. G. WeeD. H. LeeY. G. Kim and N. Gans, A switched-system approach to formation control and heading consensus for multi-robot systems, Intelligent Service Robotics, 11 (2018), 207-224. 

[5]

L. LiC. J. YuN. ZhangY. Q. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete & Continuous Dynamical Systems - S, 13 (2020), 1825-1843.  doi: 10.3934/dcdss.2020108.

[6]

Q. LinR. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: computational methods and applications, Journal of the Operations Research Society of China, 1 (2013), 275-311. 

[7]

C. Y. Liu and Z. H. Gong, Optimal control of switched systems arising in fermentation processes, Springer Optimization & Its Applications, 2014. doi: 10.1007/978-3-662-43793-3.

[8]

C. Y. LiuR. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Nonlinear Analysis: Hybrid Systems, 163 (2014), 957-988.  doi: 10.1007/s10957-014-0533-7.

[9]

R. LoxtonQ. Lin and K. L. Teo, Switching Time Optimization for Nonlinear Switched Systems: Direct Optimization and the Time-scaling Transformation, Pacific Journal of Optimization, 10 (2014), 537-560.  doi: 10.3934/jimo.2014.10.275.

[10]

R. LoxtonK. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.  doi: 10.1016/j.automatica.2008.04.011.

[11]

R. LoxtonK. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems, IEEE transactions on automatic control, 54 (2009), 2455-2460.  doi: 10.1109/TAC.2009.2029310.

[12]

P. MuL. Wang and C. Y. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.

[13]

T. NiuJ. G. ZhaiH. C. YinE. M. Feng and C. Y. Liu, The uncoupled microbial fed-batch fermentation optimization based on state-dependent switched system, International Journal of Biomathematics, 14 (2021), 2150025.  doi: 10.1142/S179352452150025X.

[14]

T. NiuJ. G. ZhaiH. C. YinE. M. FengC. Y. Liu and Z. L. Xiu, Multi-objective optimisation of nonlinear switched systems in uncoupled fed-batch fermentation, International Journal of Systems Science, 51 (2020), 1798-1813.  doi: 10.1080/00207721.2020.1780338.

[15]

L. WangJ. L. YuanC. Z. Wu and X. Y.Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.  doi: 10.1007/s11590-017-1220-z.

[16]

X. Xu and P. J. Antsaklis, An approach for solving general switched linear quadratic optimal control problems, Proceedings of the 40th IEEE Conference on Decision and Control, Florida, USA, 2001, 2478–2483.

[17]

X. Xu and P. J. Antsaklis, Optimal control of switched autonomous systems, Proceedings of the 41st IEEE Conference on Decision and Control, Florida, USA, 2002, 4401–4406.

[18]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, Automatic Control IEEE Transactions on, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.

[19]

C. J. YuK. L. TeoL. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.  doi: 10.3934/jimo.2012.8.485.

[20]

D. T. Zeng, X. Yu, J. Huang and C. Tan, Numerical computation for a kind of time optimal control problem for the tubular reactor system, Mathematical Problems in Engineering, (2016), 1–9. doi: 10.1155/2018/9580470.

[21]

C. ZhangM. Gan and C. Xue, Data-driven optimal switching and control of switched systems, Control Theory and Technology, 19 (2021), 299-314.  doi: 10.1007/s11768-021-00054-y.

[22]

N. ZhangC. J. Yu and F. S. Xie, The time-scaling transformation technique for optimal control problems with time-varying time-delay switched systems, Journal of the Operations Research Society of China, 8 (2020), 581-600.  doi: 10.1007/s40305-020-00299-5.

[23]

Y. ZhangY. Q. Liu and Y. Liu, Stability analysis for a type of multiswitching system with parallel structure, Mathematical Problems in Engineering, 2018 (2018), 1-16.  doi: 10.1155/2018/3834601.

show all references

References:
[1]

F. Bencherki, S. Türkay and H. Akay, Deadbeat observer based switched linear system identification, preprint, 2021, arXiv: 2107.14571.

[2]

Z. Geng and Z. Sun, Sub-optimal aggregation of switched linear systems, Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, 2163–2166.

[3]

X. Guo and H. P. Ren, A switching control strategy based on switching system model of three-phase vsr under unbalanced grid conditions, IEEE Transactions on Industrial Electronics, 68 (2021), 5799-5809. 

[4]

J. JinJ. P. RamirezS. G. WeeD. H. LeeY. G. Kim and N. Gans, A switched-system approach to formation control and heading consensus for multi-robot systems, Intelligent Service Robotics, 11 (2018), 207-224. 

[5]

L. LiC. J. YuN. ZhangY. Q. Bai and Z. Gao, A time-scaling technique for time-delay switched systems, Discrete & Continuous Dynamical Systems - S, 13 (2020), 1825-1843.  doi: 10.3934/dcdss.2020108.

[6]

Q. LinR. Loxton and K. L. Teo, Optimal control of nonlinear switched systems: computational methods and applications, Journal of the Operations Research Society of China, 1 (2013), 275-311. 

[7]

C. Y. Liu and Z. H. Gong, Optimal control of switched systems arising in fermentation processes, Springer Optimization & Its Applications, 2014. doi: 10.1007/978-3-662-43793-3.

[8]

C. Y. LiuR. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Nonlinear Analysis: Hybrid Systems, 163 (2014), 957-988.  doi: 10.1007/s10957-014-0533-7.

[9]

R. LoxtonQ. Lin and K. L. Teo, Switching Time Optimization for Nonlinear Switched Systems: Direct Optimization and the Time-scaling Transformation, Pacific Journal of Optimization, 10 (2014), 537-560.  doi: 10.3934/jimo.2014.10.275.

[10]

R. LoxtonK. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929.  doi: 10.1016/j.automatica.2008.04.011.

[11]

R. LoxtonK. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems, IEEE transactions on automatic control, 54 (2009), 2455-2460.  doi: 10.1109/TAC.2009.2029310.

[12]

P. MuL. Wang and C. Y. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, 187 (2020), 234-247.  doi: 10.1007/s10957-017-1163-7.

[13]

T. NiuJ. G. ZhaiH. C. YinE. M. Feng and C. Y. Liu, The uncoupled microbial fed-batch fermentation optimization based on state-dependent switched system, International Journal of Biomathematics, 14 (2021), 2150025.  doi: 10.1142/S179352452150025X.

[14]

T. NiuJ. G. ZhaiH. C. YinE. M. FengC. Y. Liu and Z. L. Xiu, Multi-objective optimisation of nonlinear switched systems in uncoupled fed-batch fermentation, International Journal of Systems Science, 51 (2020), 1798-1813.  doi: 10.1080/00207721.2020.1780338.

[15]

L. WangJ. L. YuanC. Z. Wu and X. Y.Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optimization Letters, 13 (2019), 527-541.  doi: 10.1007/s11590-017-1220-z.

[16]

X. Xu and P. J. Antsaklis, An approach for solving general switched linear quadratic optimal control problems, Proceedings of the 40th IEEE Conference on Decision and Control, Florida, USA, 2001, 2478–2483.

[17]

X. Xu and P. J. Antsaklis, Optimal control of switched autonomous systems, Proceedings of the 41st IEEE Conference on Decision and Control, Florida, USA, 2002, 4401–4406.

[18]

X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, Automatic Control IEEE Transactions on, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.

[19]

C. J. YuK. L. TeoL. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.  doi: 10.3934/jimo.2012.8.485.

[20]

D. T. Zeng, X. Yu, J. Huang and C. Tan, Numerical computation for a kind of time optimal control problem for the tubular reactor system, Mathematical Problems in Engineering, (2016), 1–9. doi: 10.1155/2018/9580470.

[21]

C. ZhangM. Gan and C. Xue, Data-driven optimal switching and control of switched systems, Control Theory and Technology, 19 (2021), 299-314.  doi: 10.1007/s11768-021-00054-y.

[22]

N. ZhangC. J. Yu and F. S. Xie, The time-scaling transformation technique for optimal control problems with time-varying time-delay switched systems, Journal of the Operations Research Society of China, 8 (2020), 581-600.  doi: 10.1007/s40305-020-00299-5.

[23]

Y. ZhangY. Q. Liu and Y. Liu, Stability analysis for a type of multiswitching system with parallel structure, Mathematical Problems in Engineering, 2018 (2018), 1-16.  doi: 10.1155/2018/3834601.

Figure 1.  The structure of a switching system
Figure 2.  The structure of a multi-switching system
Figure 3.  The time-scaling function $ \mu(s\mid\boldsymbol\theta) $
Figure 4.  The variable switching times to be optimized
Figure 5.  The first switching time transformation process
Figure 6.  The second switching time transformation process
Figure 7.  Optimal state trajectories for Example 1 obtained by using the two techniques
Figure 8.  Optimal state trajectories for Case 1 of Example 2 obtained by using the two techniques
Figure 9.  Optimal state trajectories for Case 2 and Case 3 of Example 2 obtained by using the traditional time scaling transformation and our proposed methods
Figure 10.  Optimal state trajectories for Example 3
Table 1.  Optimal costs for Example 1 obtained by using the two techniques
Time-scaling method Proposed method
Optimal cost $ g_0^\star $ 17.0752 14.2028
Optimal switching times $ \boldsymbol\tau_1^\star, \boldsymbol\tau_2^\star=[0.61, 0.86] $ $ \boldsymbol\tau_1^\star=[0.46, 0.94] $
$ \boldsymbol\tau_2^\star=[0.20, 1.17] $
Time-scaling method Proposed method
Optimal cost $ g_0^\star $ 17.0752 14.2028
Optimal switching times $ \boldsymbol\tau_1^\star, \boldsymbol\tau_2^\star=[0.61, 0.86] $ $ \boldsymbol\tau_1^\star=[0.46, 0.94] $
$ \boldsymbol\tau_2^\star=[0.20, 1.17] $
Table 2.  Optimal costs obtained by using the two techniques for Example 2
Optimal cost $ g_0^* $
Using method $ Case\; 1 $ $ Case \; 2 $ $ Case\; 3 $
Time-scaling method 1.6632$ \times 10^4 $ 4.0932$ \times 10^4 $ -
Proposed method 1.6632$ \times10^4 $ 4.0932$ \times 10^4 $ 1.6650$ \times10^4 $
Optimal cost $ g_0^* $
Using method $ Case\; 1 $ $ Case \; 2 $ $ Case\; 3 $
Time-scaling method 1.6632$ \times 10^4 $ 4.0932$ \times 10^4 $ -
Proposed method 1.6632$ \times10^4 $ 4.0932$ \times 10^4 $ 1.6650$ \times10^4 $
[1]

Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure and Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

[2]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1683-1695. doi: 10.3934/dcdss.2020098

[3]

Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086

[4]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[5]

Shulin Qin, Gengsheng Wang, Huaiqiang Yu. On switching properties of time optimal controls for linear ODEs. Mathematical Control and Related Fields, 2021, 11 (2) : 329-351. doi: 10.3934/mcrf.2020039

[6]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations and Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[7]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156

[8]

Linna Li, Changjun Yu, Ning Zhang, Yanqin Bai, Zhiyuan Gao. A time-scaling technique for time-delay switched systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1825-1843. doi: 10.3934/dcdss.2020108

[9]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control and Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[10]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control and Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[11]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[12]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[13]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068

[14]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[15]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[16]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[17]

Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002

[18]

Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005

[19]

Jiayuan Yan, Ding-Xue Zhang, Bin Hu, Zhi-Hong Guan, Xin-Ming Cheng. State bounding for time-delay impulsive and switching genetic regulatory networks with exogenous disturbance. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1749-1765. doi: 10.3934/dcdss.2022004

[20]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (103)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]