[1]
|
M. Arani, Y. Chan, X. Liu and M. Momenitabar, A lateral resupply blood supply chain network design under uncertainties, Applied Mathematical Modelling, 93 (2021), 165-187.
doi: 10.1016/j.apm.2020.12.010.
|
[2]
|
A. M. Araújo, D. Santos, I. Marques and A. Barbosa-Povoa, Blood supply chain: A two-stage approach for tactical and operational planning, OR Spectrum, 42 (2020), 1023-1053.
doi: 10.1007/s00291-020-00600-1.
|
[3]
|
M. Arvan, R. Tavakkoli-Moghaddam and M. Abdollahi, Designing a bi-objective and multi-product supply chain network for the supply of blood, Uncertain Supply Chain Management, 3 (2015), 57-68.
|
[4]
|
M. Y. N. Attari, S. H. R. Pasandideh and S. T. Akhavan Niaki, A hybrid robust stochastic programming for a bi-objective blood collection facilities problem (Case study: Iranian blood transfusion network), Journal of Industrial and Production Engineering, 36 (2019), 154-167.
|
[5]
|
G. Bruno, A. Diglio, C. Piccolo and L. Cannavacciuolo, Territorial reorganization of regional blood management systems: Evidences from an Italian case study, Omega, 89 (2019), 54-70.
|
[6]
|
H. M. Dilaver, A Mathematical Modeling Approach for Managing Regional Blood Bank Operations, M. Sc. thesis, Bilkent University in Ankara, 2018.
|
[7]
|
M. Eskandari-Khanghahi, R. Tavakkoli-Moghaddam, A. A. Taleizadeh and S. H. Amin, Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty, Engineering Applications of Artificial Intelligence, 71 (2018), 236-250.
|
[8]
|
B. Fahimnia, A. Jabbarzadeh, A. Ghavamifar and M. Bell, Supply chain design for efficient and effective blood supply in disasters, International Journal of Production Economics, 183 (2017), 700-709.
|
[9]
|
M. Fazli-Khalaf, S. Khalilpourazari and M. Mohammadi, Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design, Annals of Operations Research, 283 (2019), 1079-1109.
doi: 10.1007/s10479-017-2729-3.
|
[10]
|
S. B. Ghorashi, M. Hamedi and R. Sadeghian, Modeling and optimization of a reliable blood supply chain network in crisis considering blood compatibility using MOGWO, Neural Computing and Applications, (2019), 1–28.
|
[11]
|
Habertürk, Corona and Ramadan Reduced Daily Donations from 9 Thousand Units to 2 Thousand, News of Habertürk, 2020. Available from: https://www.haberturk.com/korona-ve-ramazan-birlesince-gunluk-kan-bagisi-9-bin-uniteden-2-bin-e-dustu-haberler-2664729.
|
[12]
|
N. Haghjoo, R. Tavakkoli-Moghaddam, H. Shahmoradi-Moghadam and Y. Rahimi, Reliable blood supply chain network design with facility disruption: A real-world application, Engineering Applications of Artificial Intelligence, 90 (2020), 103493.
|
[13]
|
S. M. Hosseini-Motlagh, M. R. G. Samani and S. Cheraghi, Robust and stable flexible blood supply chain network design under motivational initiatives, Socio-Economic Planning Sciences, (2020), 70.
|
[14]
|
S. M. Hosseini-Motlagh, M. R. G. Samani and S. Cheraghi, Robust and stable flexible blood supply chain network design under motivational initiatives, Socio-Economic Planning Sciences, 70 (2020), 100725.
|
[15]
|
S. M. Hosseini-Motlagh, M. R. G. Samani and S. Homaei, Blood supply chain management: Robust optimization, disruption risk, and blood group compatibility (a real-life case), Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 1085-1104.
|
[16]
|
İ Karadaǧ, M. E. Keskin and V. Yiǧ it, Re-design of a blood supply chain organization with mobile units, Soft Computing, 25 (2021), 6311-6327.
|
[17]
|
S. Khalilpourazari and A. Arshadi Khamseh, Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: A comprehensive study with real world application, Annals of Operations Research, 283 (2019), 355-393.
doi: 10.1007/s10479-017-2588-y.
|
[18]
|
S. Khalilpourazari, S. Soltanzadeh, G. W. Weber and S. K. Roy, Designing an efficient blood supply chain network in crisis: Neural learning, optimization and case study, Annals of Operations Research, 289 (2020), 123-152.
doi: 10.1007/s10479-019-03437-2.
|
[19]
|
R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh and G. W. Weber, A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk, Numerical Algebra, Control & Optimization, 11 (2021), 221.
doi: 10.3934/naco.2020023.
|
[20]
|
R. Lotfi, S. Safavi, A. Gharehbaghi, S. Ghaboulian Zare, R. Hazrati and G. W. Weber, Viable supply chain network design by considering blockchain technology and cryptocurrency, Mathematical Problems in Engineering, (2021).
|
[21]
|
R. Lotfi, B. Kargar, A. Gharehbaghi and G. W. Weber, Viable medical waste chain network design by considering risk and robustness, Environmental Science and Pollution Research, (2021), 1–16.
|
[22]
|
R. Lotfi, N. Mardani and G. W. Weber, Robust bi-level programming for renewable energy location, International Journal of Energy Research, 45 (2021), 7521-7534.
|
[23]
|
R. Lotfi, B. Kargar, S. H. Hoseini, S. Nazari, S. Safavi and G. W. Weber, Resilience and sustainable supply chain network design by considering renewable energy, International Journal of Energy Research, 45 (2021), 1-18.
|
[24]
|
R. Lotfi, Z. Yadegari, S. H. Hosseini, A. H. Khameneh, E. B. Tirkolaee and G. W. Weber, A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project, Journal of Industrial & Management Optimization, (2020).
doi: 10.3934/jimo. 2020158.
|
[25]
|
G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Applied mathematics and computation, 213 (2009), 455-465.
doi: 10.1016/j.amc.2009.03.037.
|
[26]
|
A. Nagurney, A. H. Masoumi and M. Yu, Supply chain network operations management of a blood banking system with cost and risk minimization, Computational Management Science, 9 (2012), 205-231.
doi: 10.1007/s10287-011-0133-z.
|
[27]
|
J. Nahofti Kohneh, H. Derikvand, M. Amirdadi and E. Teimoury, A blood supply chain network design with interconnected and motivational strategies: A case study, Journal of Ambient Intelligence and Humanized Computing, (2021), 1–21.
|
[28]
|
NTV, Reduced Blood Stocks Caused TRC to Offer VIP Service to Donors, News of NTV, 2020. Available from: https://www.ntv.com.tr/galeri/saglik/kan-stoklari-azaldi-kizilay-bagiscilara-vip-hizmet-baslatti,d-XQI2jsHk6VBnoVXd1xRQ/EMpFQyAyoUuOP_sDU5AjXQ.
|
[29]
|
A. F. Osorio, S. C. Brailsford and H. K. Smith, A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision making, International Journal of Production Research, 53 (2015), 7191-7212.
|
[30]
|
A. F. Osorio, S. C. Brailsford, H. K. Smith and J. Blake, Designing the blood supply chain: How much, how and where?, Vox sanguinis, 113 (2018), 760-769.
|
[31]
|
D. Rahmani, Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions, Annals of Operations Research, 283 (2019), 613-641.
doi: 10.1007/s10479-018-2960-6.
|
[32]
|
G. Șahin, H. Süral and S. Meral, Locational analysis for regionalization of Turkish Red Crescent blood services, Computers & Operations Research, 34 (2007), 692-704.
|
[33]
|
M. R. G. Samani, S. M. Hosseini-Motlagh and S. F. Ghannadpour, A multilateral perspective towards blood network design in an uncertain environment: Methodology and implementation, Computers & Industrial Engineering, 130 (2019), 450-471.
|
[34]
|
S. A. Seyfi-Shishavan, Y. Donyatalab, E. Farrokhizadeh and S. I. Satoglu, A fuzzy optimization model for designing an efficient blood supply chain network under uncertainty and disruption, Annals of Operations Research, (2021), 1–55.
|
[35]
|
P. N. Thanh, O. Péton and N. Bostel, A linear relaxation-based heuristic approach for logistics network design, Computers & Industrial Engineering, 59 (2010), 964-975.
|
[36]
|
A. S. Torrado and A. Barbosa-Póvoa, Towards an optimized and sustainable blood supply chain network under uncertainty: A literature review, Cleaner Logistics and Supply Chain, (2022).
doi: 10.1007/s00291-020-00600-1.
|
[37]
|
Turkish Rec Crescent, Emergency Blood Call, News of Turkish Rec Crescent, 2020. Available from: https://www.kizilay.org.tr/Haber/KurumsalHaberDetay/5116.
|
[38]
|
M. Yegül, Simulation Analysis of the Blood Supply Chain and a Case Study, M. Sc. thesis, Middle East Technical University in Ankara, 2007.
|
[39]
|
M. Yegül, Blood Supply Network Design, Ph. D thesis, Middle East Technical University in Ankara, 2016.
|
[40]
|
V. Yolcu, Logistics Management for Blood Collection and Blood Products Distribution in Turkish Red Crescent, M. Sc. thesis, Çankaya University in Ankara, 2019.
|
[41]
|
B. Zahiri, S. A. Torabi, M. Mohammadi and M. Aghabegloo, A multi-stage stochastic programming approach for blood supply chain planning, Computers & Industrial Engineering, 122 (2018), 1-14.
|
[42]
|
Y. Zhou, T. Zou, C. Liu, H. Yu, L. Chen and J. Su, Blood supply chain operation considering lifetime and transshipment under uncertain environment, Applied Soft Computing, (2021), 106.
|