[1]
|
A. Addou and A. Roubi, Proximal-type methods with generalized Bregman functions and applications to generalized fractional programming, Optimization, 59 (2010), 1085-1105.
doi: 10.1080/02331930903395857.
|
[2]
|
S. Addoune, K. Boufi and A. Roubi., Proximal bundle algorithms for nonlinearly constrained convex minimax fractional programs, J. Optim. Theory Appl., 179 (2018), 212-239.
doi: 10.1007/s10957-018-1342-1.
|
[3]
|
S. Addoune, M. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs, Optimization, 66 (2017), 1495-1517.
doi: 10.1080/02331934.2017.1338698.
|
[4]
|
A. Aubry, V. Carotenuto and A. De Maio, New results on generalized fractional programming problems with Toeplitz quadratics, IEEE Signal Process. Lett., 23 (2016), 848-852.
doi: 10.1109/LSP.2016.2555880.
|
[5]
|
A. Aubry, A. De Maio, Y. Huang and M. Piezzo, Robust design of radar Doppler filters, IEEE Trans. Signal Process, 64 (2016), 5848-5860.
doi: 10.1109/TSP.2016.2576423.
|
[6]
|
A. Aubry, A. De Maio and M. M. Naghsh, Optimizing radar waveform and Doppler filter bank via generalized fractional programming, IEEE J. Sel. Topics Signal Process, 9 (2015), 1387-1399.
doi: 10.1109/JSTSP.2015.2469259.
|
[7]
|
A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Math. Programming, 72 (1996), 147–175.
doi: 10.1007/BF02592087.
|
[8]
|
A. I. Barros, J. B. G. Frenk, S. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems, J. Global Optim., 8 (1996), 139-170.
doi: 10.1007/BF00138690.
|
[9]
|
C. R. Bector, S. Chandra and M. K. Bector, Generalized fractional programming duality: A parametric approach, J. Optim. Theory Appl., 60 (1989), 243-260.
doi: 10.1007/BF00940006.
|
[10]
|
J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Math. Programming, 43 (1989), 349-363.
doi: 10.1007/BF01582298.
|
[11]
|
H. Boualam and A. Roubi, Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs, J. Ind. Manag. Optim., 15 (2019), 1897-1920.
doi: 10.3934/jimo.2018128.
|
[12]
|
H. Boualam and A. Roubi, Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs, J. Global Optim., 74 (2019), 255-284.
doi: 10.1007/s10898-019-00757-2.
|
[13]
|
K. Boufi, M. El Haffari and A. Roubi, Optimality conditions and a method of centers for minimax fractional programs with difference of convex functions, J. Optim. Theory Appl., 187 (2020), 105-132.
doi: 10.1007/s10957-020-01738-2.
|
[14]
|
K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs, J. Global Optim., 69 (2017), 387-426.
doi: 10.1007/s10898-017-0523-z.
|
[15]
|
K. Boufi and A. Roubi, Duality results and dual bundle methods based on the dual method of centers for minimax fractional programs, SIAM J. Optim., 29 (2019), 1578-1602.
doi: 10.1137/18M1199708.
|
[16]
|
K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs, Optim. Methods Softw., 34 (2019), 515-545.
doi: 10.1080/10556788.2017.1392520.
|
[17]
|
J.-P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Math. Programming, 52 (1991), 191–207.
doi: 10.1007/BF01582887.
|
[18]
|
J.-P. Crouzeix, J. A. Ferland and V. H. Nguyen, Revisiting Dinkelbach-type algorithms for generalized fractional programs, Opsearch, 45 (2008), 97-110.
doi: 10.1007/BF03398807.
|
[19]
|
J.-P. Crouzeix, J. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, J. Optim. Theory Appl., 47 (1985), 35-49.
doi: 10.1007/BF00941314.
|
[20]
|
J.-P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Math. Programming, 27 (1983), 342-354.
doi: 10.1007/BF02591908.
|
[21]
|
J.-P. Crouzeix, J. A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs, J. Optim. Theory Appl., 50 (1986), 183-187.
doi: 10.1007/BF00938484.
|
[22]
|
M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program, RAIRO Oper. Res., 51 (2017), 985-1004.
doi: 10.1051/ro/2017004.
|
[23]
|
M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs, J. Ind. Manag. Optim., 13 (2017), 1991-2013.
doi: 10.3934/jimo.2017028.
|
[24]
|
J. E. Falk, Maximization of signal-to-noise ratio in an optical filter, SIAM Appl. Math., 17 (1969), 582-592.
doi: 10.1137/0117055.
|
[25]
|
K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 42-47.
doi: 10.1073/pnas.39.1.42.
|
[26]
|
J. B. G. Frenk, G. Kassay and J. Kolumbán, On equivalent results in minimax theory, European J. Oper. Res., 157 (2004), 46-58.
doi: 10.1016/j.ejor.2003.08.013.
|
[27]
|
J. B. G. Frenk and S. Schaible, Fractional programming, in Handbook of Generalized Convexity and Generalized Monotonicity, Nonconvex Optim. Appl., 76, Springer, New York, 2005,335—386.
doi: 10.1007/0-387-23393-8_8.
|
[28]
|
A. Ghazi and A. Roubi, A DC approach for minimax fractional optimization programs with ratios of convex functions, Optim. Methods Softw., (2020).
doi: 10.1080/10556788.2020.1818234.
|
[29]
|
O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403-419.
doi: 10.1137/0329022.
|
[30]
|
J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. II. Advanced Theory and Bundle Methods, Fundamental Principles of Mathematical Sciences, 306, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-662-06409-2.
|
[31]
|
R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas' lemma, J. Optim. Theory Appl., 41 (1983), 417-424.
doi: 10.1007/BF00935361.
|
[32]
|
G. Kassay, A simple proof of König's minimax theorems, Acta Math. Hungar., 63 (1994), 371-374.
doi: 10.1007/BF01874462.
|
[33]
|
B.-L. Lin and C.-Z. Cheng, A minimax theorems involving weakly downward functions, Acta Math. Hungar., 87 (2000), 287-293.
doi: 10.1023/A:1006721718184.
|
[34]
|
A. Nagih and G. Plateau, Problèmes fractionnaires: Tour d'horizon sur les applications et méthodes de résolution, RAIRO Oper. Res., 33 (1999), 383-419.
doi: 10.1051/ro:1999118.
|
[35]
|
B. Ricceri, On a minimax theorem: An improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2 (2017), 99-152.
|
[36]
|
B. Ricceri, A strict minimax inequality criterion and some of its consequences, Positivity, 16 (2012), 455-470.
doi: 10.1007/s11117-012-0164-x.
|
[37]
|
R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control, 12 (1974), 268-285.
doi: 10.1137/0312021.
|
[38]
|
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.
|
[39]
|
A. Roubi, Convergence of prox-regularization methods for generalized fractional programming, RAIRO Oper. Res., 36 (2002), 73-94.
doi: 10.1051/ro:2002006.
|
[40]
|
A. Roubi, Method of centers for generalized fractional programming, J. Optim. Theory Appl., 107 (2000), 123-143.
doi: 10.1023/A:1004660917684.
|
[41]
|
S. Schaible, Fractional programming, in Handbook Global Optimization, Nonconvex Optim. Appl., 2, Kluwer Acad. Publ., Dordrecht, 1995,495–608.
doi: 10.1007/978-1-4615-2025-2.
|
[42]
|
S. Simons, Minimax theorems and their Proofs, in Minimax and Applications, Nonconvex Optim. Appl., 4, Kluwer Acad. Publ., Dordrecht, 1995, 1–23.
doi: 10.1007/978-1-4613-3557-3_1.
|
[43]
|
S. Simons, An upward-downward minimax theorem, Arch. Math. (Basel), 55 (1990), 275-279.
doi: 10.1007/BF01191168.
|
[44]
|
M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171.
|
[45]
|
A. M. Stancu, Mathematical Programming with Type-I Functions, Matrix, Romania, Bucharest, 2013.
|
[46]
|
I. M. Stancu-Minasian, Fractional Programming. Theory, Methods and Applications, Mathematics and its Applications, 409, Kluwer Academic Publishers Group, Dordrecht, 1997.
doi: 10.1007/978-94-009-0035-6.
|
[47]
|
I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017), 439-470.
doi: 10.1080/02331934.2016.1276179.
|
[48]
|
I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019), 2123-2167.
doi: 10.1080/02331934.2019.1632250.
|
[49]
|
I. M. Stancu-Minasian, A seventh bibliography of fractional programming, Adv. Model. Optim., 15 (2013), 309–386. Available from: https://camo.ici.ro/journal/vol15/v15b13.pdf.
|
[50]
|
I. M. Stancu-Minasian, A sixth bibliography of fractional programming, Optimization, 55 (2006), 405-428.
doi: 10.1080/02331930600819613.
|
[51]
|
J.-J. Strodiot, J.-P. Crouzeix, J. A. Ferland and V. H. Nguyen, An inexact proximal point method for solving generalized fractional programs, J. Global Optim., 42 (2008), 121-138.
doi: 10.1007/s10898-007-9270-x.
|
[52]
|
Z. K. Xu, Duality in generalized nonlinear fractional programming, J. Math. Anal. Appl., 169 (1992), 1-9.
doi: 10.1016/0022-247X(92)90099-Y.
|
[53]
|
G. J. Zalmai, Duality for generalized fractional programs involving $n$-set functions, J. Math. Anal. Appl., 149 (1990), 339-350.
doi: 10.1016/0022-247X(90)90046-I.
|