Finding a zero of a maximal monotone operator is fundamental in convex optimization and monotone operator theory, and proximal point algorithm (PPA) is a primary method for solving this problem. PPA converges not only globally under fairly mild conditions but also asymptotically at a fast linear rate provided that the underlying inverse operator is Lipschitz continuous at the origin. These nice convergence properties are preserved by a relaxed variant of PPA. Recently, a linear convergence bound was established in [M. Tao, and X. M. Yuan, J. Sci. Comput., 74 (2018), pp. 826-850] for the relaxed PPA, and it was shown that the bound is tight when the relaxation factor $ \gamma $ lies in $ [1,2) $. However, for other choices of $ \gamma $, the bound obtained by Tao and Yuan is suboptimal. In this paper, we establish tight linear convergence bounds for any choice of $ \gamma\in(0,2) $ using a unified and much simplified analysis. These results sharpen our understandings to the asymptotic behavior of the relaxed PPA and make the whole picture for $ \gamma\in(0,2) $ clear.
Citation: |
Figure 1. Illustration of the bounds. Left: results in [27]. Right: results of this work
[1] | A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202. doi: 10.1137/080716542. |
[2] | D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. |
[3] | E. Corman and X. Yuan, A generalized proximal point algorithm and its convergence rate, SIAM J. Optim., 24 (2014), 1614-1638. doi: 10.1137/130940402. |
[4] | D. Davis and W. Yin, Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions, Math. Oper. Res., 42 (2017), 783-805. doi: 10.1287/moor.2016.0827. |
[5] | J. Douglas, Jr ., H. H. Rachford and Jr ., On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421-439. doi: 10.1090/S0002-9947-1956-0084194-4. |
[6] | J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), 293-318. doi: 10.1007/BF01581204. |
[7] | E. X. Fang, B. He, H. Liu and X. Yuan, Generalized alternating direction method of multipliers: New theoretical insights and applications, Math. Program. Comput., 7 (2015), 149-187. doi: 10.1007/s12532-015-0078-2. |
[8] | D. Gabay, Applications of the method of multipliers to variational inequalities, in Fortin, M., Glowinski, R. (eds. ) Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, North Holland, Amsterdam, 1983, 299–331. |
[9] | D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers and Mathematics with Applications, 2 (1976), 17-40. doi: 10.1016/0898-1221(76)90003-1. |
[10] | R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O., R2, 9 (1975), 41-76. doi: 10.1051/m2an/197509R200411. |
[11] | G. Gu and J. Yang, Tight sublinear convergence rate of the proximal point algorithm for maximal monotone inclusion problems, SIAM J. Optim., 30 (2020), 1905-1921. doi: 10.1137/19M1299049. |
[12] | O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403-419. doi: 10.1137/0329022. |
[13] | O. Güler, New proximal point algorithms for convex minimization, SIAM J. Optim., 2 (1992), 649-664. doi: 10.1137/0802032. |
[14] | B. He and X. Yuan, On the convergence rate of Douglas-Rachford operator splitting method, Math. Program., 153 (2015), 715-722. doi: 10.1007/s10107-014-0805-x. |
[15] | M. R. Hestenes, Multiplier and gradient methods, J. Optimization Theory Appl., 4 (1969), 303-320. doi: 10.1007/BF00927673. |
[16] | D. Leventhal, Metric subregularity and the proximal point method, J. Math. Anal. Appl., 360 (2009), 681-688. doi: 10.1016/j.jmaa.2009.07.012. |
[17] | P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964-979. doi: 10.1137/0716071. |
[18] | B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 4 (1970), 154-158. |
[19] | B. Martinet, Détermination approchée d'un point fixe d'une application pseudo-contractante. Cas de l'application prox, C. R. Acad. Sci. Paris Sér. A-B, 274 (1972), A163–A165. |
[20] | G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Mathematical Journal, 29 (1962), 341-346. |
[21] | J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris, 255 (1962), 2897-2899. |
[22] | J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299. |
[23] | Y. E. Nesterov, A method for solving the convex programming problem with convergence rate $O(1/k^{2})$, Dokl. Akad. Nauk SSSR, 269 (1983), 543-547. |
[24] | M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization (Sympos., Univ. Keele, Keele, 1968), Academic Press, London, 1969. |
[25] | R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97-116. doi: 10.1287/moor.1.2.97. |
[26] | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), 877-898. doi: 10.1137/0314056. |
[27] | M. Tao and X. Yuan, On the optimal linear convergence rate of a generalized proximal point algorithm, J. Sci. Comput., 74 (2018), 826-850. doi: 10.1007/s10915-017-0477-9. |
Illustration of the bounds. Left: results in [27]. Right: results of this work