Ingredients | Value |
Ammonium perchlorate (AP) | 83% |
Hydroxy-terminated polybutadiene (HTPB) | 11.9% |
Oxamide | 5% |
Carbon black | 0.1% |
It's difficult to meet the design requirements of a rocket with sensitive parameters using the traditional methods. This paper develops a design and optimization concept for a lightweight solid-propellant rocket with a small caliber and a high Mach number. The structural design and numerical modeling depend on the interior ballistic methodology. The model is validated by comparing pressure-time data from simulation and experiment. A modified evolutionary algorithm with constraints is applied because of the interactive design parameters and conflicting objects. The launch performance is improved by single- and multi-objective optimization. Under unchanged interior ballistic performance conditions, the peak pressure is reduced by 46.4%, and the erosive peak ratio is reduced by 46.4%. Despite the constraints, the Mach number is improved by 4.9%, the total impulse is improved by 6.3%, the peak pressure is reduced by 92.5%, and the erosive effects are reduced by 38.1% using different optimal solutions. A Pareto front is obtained by a constrained NSGA-Ⅱ, which reveals non-linear and non-uniform relations among design objects. A tidying method is proposed for a clear Pareto front. It indicates that, despite the sensitive parameters, launch safety and higher velocity are possible. The results help designers choose the best design schemes.
Citation: |
Table 1. Propellant ingredients in validation case
Ingredients | Value |
Ammonium perchlorate (AP) | 83% |
Hydroxy-terminated polybutadiene (HTPB) | 11.9% |
Oxamide | 5% |
Carbon black | 0.1% |
Table 2. Charge & motor parameters in validation case
Parameters | Value |
Burning rate coefficient (mm/s/Pa$ ^n $) | 0.0038 |
Burning rate pressure index | 0.461 |
Nozzle throat diameter(mm) | 26.416 |
Specific heat | 1.217 |
Propellant web thickness(mm) | 22.86 |
Propellant length(mm) | 692 |
Table 3. Initial charge parameters
Parameters | Value | Parameters | Value |
Burning rate coefficient (mm/s/Pa$ ^n $) | 0.034 | Pressure index | 0.358 |
Characteristic velocity(m/s) | 1341 | Temperature factor | 1.0 |
Propellant density(kg/m$ ^3 $) | 1610 | Flow rate factor | 0.95 |
Propellant web thickness(mm) | 27.3535 | Specific heat | 1.25 |
Table 4. Initial motor parameters
Parameters | Value | Parameters | Value |
Length-to-diameter proportion | 18.75 | Nozzle throat diameter(mm) | 18.0 |
Nozzle expansion ratio | 1.6 | Nozzle exit diameter(mm) | 28.8 |
Table 5. Parameters of initial performance with erosive effects
Parameters | Value | Parameters | Value |
Equilibrium pressure (MPa) | 31.3275 | Average thrust(kN) | 12.8273 |
Peak pressure(Mpa) | 105.3515 | Total impulse(kN $ \cdot $ s) | 10.2872 |
Max thrust(kN) | 40.5700 | Burning time(s) | 0.801 |
Erosive peak ratio | 3.3629 | Max Mach number | 2.5510 |
Table 6. Parameters of initial performance theoretically
Parameters | Value | Parameters | Value |
Equilibrium pressure (MPa) | 31.3275 | Average thrust(kN) | 11.2740 |
Peak pressure(Mpa) | 31.3275 | Total impulse(kN $ \cdot $ s) | 10.2815 |
Max thrust(kN) | 12.0287 | Burning time(s) | 0.911 |
Erosive peak ratio | 1.0000 | Max Mach number | 2.5517 |
Table 7. Optimal design parameters. The size of nozzle throat becomes smaller to enhance the interior ballistic performance, with reduced erosive effects
$ A $ | $ r_p $ | $ {P_{\rm{eq}}} $/MPa | $ B $ | $ e $/mm | $ d_{\rm{t}} $/mm | $ A_{\rm{t}} $/mm$ ^2 $ |
0.1% | 1.8018 | 31.3586 | + 0.1% | 19.8536 | 19.7633 | 306.7656 |
1% | 1.7993 | 31.6407 | + 1% | 19.8536 | 19.7043 | 304.9377 |
5% | 1.7884 | 32.8938 | + 5% | 19.8536 | 19.4502 | 297.1239 |
10% | 1.7748 | 34.4605 | + 10% | 19.8536 | 19.1497 | 288.0125 |
15% | 1.7619 | 36.0264 | + 15% | 19.8536 | 18.8663 | 279.5513 |
20% | 1.7492 | 37.5927 | + 20% | 19.8536 | 18.5984 | 271.6681 |
Table 8.
Optimal rocket parameters. The peak pressure and maximum propulsion force are increased but the change of average thrust (
$ A $ | $ {P_{\rm{m}}} $/MPa | $ {F_{\rm{m}}} $/kN | $ {F_{\rm{ave}}} $/kN | $ I $/kN$ \cdot $s | $ t $/s | $ M_{\rm{max}} $ |
0.1% | 56.5028 | 26.2026 | 15.2652 | 9.0061 | 0.589 | 2.3231 |
1% | 56.9306 | 26.2440 | 15.1632 | 9.0065 | 0.593 | 2.3221 |
5% | 58.8283 | 26.4259 | 15.4245 | 9.0075 | 0.583 | 2.3236 |
10% | 61.1599 | 26.6331 | 15.3745 | 9.0091 | 0.585 | 2.3225 |
15% | 63.4747 | 26.8312 | 15.5617 | 9.0098 | 0.578 | 2.3232 |
20% | 65.7580 | 27.0144 | 15.4561 | 9.0105 | 0.582 | 2.3219 |
Table 9. Relevant optimal motor parameters. The ratio of nozzle throat area to sectional area of charging channel is decreased and the ratio of burning surface area of solid propellant to nozzle throat area is increased
$ A $ | $ m $/kg | $ \Delta $/(g/cm$ ^3 $) | $ {\text{æ}}_0 $ | $ J $ | $ K_{\rm{N}} $ |
0.1% | 4.2276 | 1.2890 | 388.4005 | 0.4504 | 862.2808 |
1% | 4.2276 | 1.2890 | 388.4005 | 0.4478 | 867.4496 |
5% | 4.2276 | 1.2890 | 388.4005 | 0.4363 | 890.2617 |
10% | 4.2276 | 1.2890 | 388.4005 | 0.4229 | 918.4257 |
15% | 4.2276 | 1.2890 | 388.4009 | 0.4105 | 946.2236 |
20% | 4.2276 | 1.2890 | 388.4005 | 0.3989 | 973.6809 |
Table 10. Primary optimum solutions. The four special points, A, B, C, and D, represent the boundary points of Pareto front. The goal for minimum peak pressure, minimum erosive effects, and maximum Mach number can be attained by different points of the Pareto front, and their threshold is determined by these special points
$ {P_{\rm{m}}} $/MPa | $ r_p $ | $ I $/kN$ \cdot $s | $ e $/mm | $ d_{\rm{t}} $/mm | $ d_{\rm{e}} $/mm | $ t $/s | $ t_{\rm{max}} $/s | $ M_{\rm{max}} $ | |
A | 7.9447 | 2.2001 | 8.1926 | 19.854 | 40 | 50 | 1.161 | 1.161 | 2.0913 |
B | 59.977 | 1.7818 | 9.1996 | 19.854 | 19.301 | 33.745 | 0.594 | 0.578 | 2.3668 |
C | 59.993 | 4.3926 | 10.93 | 28.251 | 23.372 | 50 | 1.024 | 1.021 | 2.6762 |
D | 18.792 | 2.082 | 7.7942 | 19.854 | 29.745 | 32.239 | 0.849 | 0.849 | 2.0185 |
[1] | V. A. Arkhipov, V. E. Zarko, I. K. Zharova, A. S. Zhukov, E. A. Kozlov, D. D. Aksenenko and A. V. Kurbatov, Solid propellant combustion in a high-velocity cross-flow of gases (review), Combust. Explos. Shock Waves, 52 (2016), 497-513. |
[2] | J. S. Billheimer, Optimization and design simulation in solid rocket design, 3rd Solid Propulsion Conference, (1968), 488. |
[3] | A. Bougamra and H. Lu, Interior ballistics two-phase reactive flow model applied to small caliber projectile-gun system, Propellants, Explosives, Pyrotechnics, 40 (2015), 720-728. |
[4] | R. Cao and X. Zhang, Multi-objective optimization of the aerodynamic shape of a long-range guided rocket, Struct. Multidisc. Optim., 57 (2018), 1779-1792. doi: 10.1007/s00158-017-1845-7. |
[5] | C. Cheng and X. Zhang, Interior ballistic charge design based on a modified particle swarm optimizer, Struct. Multidisc. Optim., 46 (2012), 303-310. |
[6] | R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc., 49 (1943), 1-23. doi: 10.1090/S0002-9904-1943-07818-4. |
[7] | E. J. Cramer, J. E. Dennis, Jr., P. D. Frank, R. M. Lewis and G. R. Shubin, Problem formulation for multidisciplinary optimization, SIAM J. Optim., 4 (1994), 754-776. doi: 10.1137/0804044. |
[8] | K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Computat., 6 (2002), 182-197. |
[9] | S. Dong and Z. Zhang, Principle of Solid Rocket Motors, Beijing Institute of Technology Press, Beijing, 1996. |
[10] | M. Ebrahimi, M. R. Farmani and J. Roshanian, Multidisciplinary design of a small satellite launch vehicle using particle swarm optimization, Struct. Multidisc. Optim., 44 (2011), 773-784. |
[11] | J. Eichler, Performance optimization of an air-to-air missile design, Journal of Spacecraft and Rockets, 14 (1977), 376-377. |
[12] | M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York, 1999. doi: 10.1002/9780470172261. |
[13] | R. J. Hartfield, R. M. Jenkins and J. E. Burkhalter, Optimizing a solid rocket motor boosted ramjet powered missile using a genetic algorithm, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2005), 1720-1736. doi: 10.1016/j.amc.2005.07.003. |
[14] | P. R. Hempel, C. P. Moeller and L. M. Stuntz, Missile design optimization - experience and developments, 5th Symposium on Multidisciplinary Analysis and Optimization, (1994), 4344. |
[15] | W. B. Herbst and B. Krogull, Design for air combat, Journal of Aircraft, 10 (1973), 247-253. |
[16] | J. Jodei, M. Ebrahimi and J. Roshanian, Multidisciplinary design optimization of a small solid propellant launch vehicle using system sensitivity analysis, Struct. Multidisc. Optim., 38 (2009), 93-100. |
[17] | Y. Kamm and A. Gany, Solid rocket motor optimization, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, (2008), 4695. |
[18] | B. Li, Q. Li, Y. Zeng, Y. Rong and R. Zhang, 3D trajectory optimization for energy-efficient uav communication: A control design perspective, IEEE Transactions on Wireless Communications, (2021). |
[19] | B. Li, Y. Wang, K. Zhang and G. Duan, Constrained feedback control for spacecraft reorientation with an optimal gain, IEEE Transactions on Aerospace and Electronic Systems, 57 (2021), 3916-3926. |
[20] | B. Li, J. Zhang, L. Dai, K. L. Teo and S. Wang, A hybrid offline optimization method for reconfiguration of multi-uav formations, IEEE Transactions on Aerospace and Electronic Systems, 57 (2021), 506-520. |
[21] | C. Li, H. Fang and C. Gong, Development of an efficient global optimization method based on adaptive infilling for structure optimization, Struct. Multidisc. Optim., 62 (2020), 3383-3412. |
[22] | K. Li and X. Zhang, Multi-objective optimization of interior ballistic performance using NSGA-Ⅱ, Propellants, Explosives, Pyrotechnics, 36 (2011), 282-290. |
[23] | K. Li and X. Zhang, Using NSGA-Ⅱ and topsis methods for interior ballistic optimization based on one-dimensional two-phase flow model, Propellants, Explosives, Pyrotechnics, 37 (2012), 468-475. |
[24] | Y. Li, Principle of Solid Rocket Motors, Beijing University of Aeronautics and Astronautics Press, Beijing, 1991. |
[25] | C. Liu, R. Loxton, K. L. Teo and S. Wang, Optimal state-delay control in nonlinear dynamic systems, Automatica, 135 (2022), 109981. doi: 10.1016/j.automatica.2021.109981. |
[26] | Y. Liu, S. Chen, F. Wang and F. Xiong, Sequential optimization using multi-level cokriging and extended expected improvement criterion, Struct. Multidisc. Optim., 58 (2018), 1155-1173. doi: 10.1007/s00158-018-1959-6. |
[27] | Z. Lv, Y. Zheng and T. Fang, Experimental study on erosive combustion of solid propellant, Journal of China Ordnance, (1981), 74–82,84. |
[28] | Z. Michalewicz, D. Dasgupta, R. G. Le Riche and M. Schoenauer, Evolutionary algorithms for constrained engineering problems, Computers & Industrial Engineering, 30 (1996), 851-870. |
[29] | J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, (1985), 93-100. |
[30] | Y. Shi, Research on Long Range Air-to-Air Anti-Radiation Missile General Design and Optimization, Ph.D thesis, Northwestern Polytechnical University in Xi'an, Shaanxi, 2015. |
[31] | N. Srinivas and K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation, 2 (1994), 221-248. |
[32] | K. L. Teo, B. Li, C. Yu and V. Rehbock, Applied and Computational Optimal Control: A Control Parametrization Approach, Springer, New York, 2021. doi: 10.1007/978-3-030-69913-0. |
[33] | C. Tola and M. Nikbay, Solid rocket motor propellant optimization with coupled internal ballistic-structural interaction approach, Journal of Spacecraft and Rockets, 55 (2018), 936-947. |
[34] | T. J. Walsh and R. L. Wartburg, Ballistic missile sizing and optimizing, 14th Joint Propulsion Conference, (1978), 1019. |
[35] | J. Wang, J. Zhu, J. Hou, C. Wang and W. Zhang, Lightweight design of a bolt-flange sealing structure based on topology optimization, Struct. Multidisc. Optim., 62 (2020), 3413-3428. doi: 10.1007/s00158-020-02683-4. |
[36] | P. Wang and X. Zhang, Optimized Bézier-curve-based command generation and robust inverse optimal control for attitude tracking of spacecraft, Aerospace Science and Technology, 121 (2022), 107183. |
[37] | M. A. Willcox, M. Q. Brewster, K. C. Tang, D. S. Stewart and I. Kuznetsov, Solid rocket motor internal ballistics simulation using three-dimensional grain burnback, Journal of Propulsion and Power, 23 (2007), 575-584. |
[38] | X. Wu, J. Chen and D. Wang, Solid Propellant Motor Gas Dynamics, Beijing University of Aeronautics and Astronautics Press, Beijing, 2016. |
[39] | M. Xu, External Ballistics of Rockets, Harbin Institute of Technology Press, Harbin, 2004. |
[40] | Z. Xu, F. Jiang, C. Zhong, Y. Gou and H. Teng, Multi-objective layout optimization for an orbital propellant depot, Struct. Multidisc. Optim., 61 (2020), 207-223. doi: 10.1007/s00158-019-02354-z. |
[41] | F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810. doi: 10.3934/jimo.2016.12.781. |
[42] | S. M. Zandavi and S. H. Pourtakdoust, Multidisciplinary design of a guided flying vehicle using simplex nondominated sorting genetic algorithm Ⅱ, Struct. Multidisc. Optim., 57 (2018), 705-720. doi: 10.1007/s00158-017-1776-3. |
[43] | G. Zha, D. Smith, M. Schwabacher, K. Rasheed, A. Gelsey, D. Knight and M. Haas, High-performance supersonic missile inlet design using automated optimization, Journal of Aircraft, 34 (1997), 697-705. |
[44] | X. Zhang, Interior Ballistics of Guns, Beijing Institute of Technology Press, Beijing, 2014. |
[45] | Y. Zhang, C. Gong and C. Li, Efficient time-variant reliability analysis through approximating the most probable point trajectory, Struct. Multidisc. Optim., 63 (2021), 289-309. doi: 10.1007/s00158-020-02696-z. |
[46] | H. Zhu, H. Luo, P. Wang, G. Cai and F. Hu, Uncertainty analysis and design optimization of solid rocket motors with finocyl grain, Struct. Multidisc. Optim., 62 (2020), 3521-3537. |
A design framework of the MDO problem
An integrated solution flow for rocket design
Structural sketch for small-caliber rocket
The three combustion stages in solid-propellant rocket chamber
Procedure of NSGA-Ⅱ with two modules
Comparisons of P-t traces between numerical calculation and experiment
Initial P-t and F-t curves of numerical simulation
Convergence curves of single-object optimization when
Initial Pareto front of multi-objective optimization
Pareto front after tidying up
Comparison of special Pareto-optimal points
Motor interior ballistic performance
Three degree-of-freedom trajectory validation