\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Channel structures of transnational supply chains

  • *Corresponding author: Hui Yu

    *Corresponding author: Hui Yu

The study is supported in part by the National Natural Science Foundation of China (Project No. 72172019, 71872021) and the Fundamental Research Funds for the Central Universities (Project No. 2021CDJSKJC11)

Abstract Full Text(HTML) Figure(7) / Table(5) Related Papers Cited by
  • There are two fundamental and important problems for enterprises with an existing domestic supply chain: whether to build a new transnational supply chain and which channel should be chosen to build the new transnational supply chain. In this paper, we assume that the enterprise's existing domestic supply chain structure and the transnational supply chain structure to be considered are likely to be distributor channels and direct sales channels. By considering different channel scenarios at home and abroad, we establish a robust newsvendor model with profit maximization motivation to study the above-mentioned problems. We find that exchange rate risk and foreign price are key factors that determine whether an enterprise chooses to build a new transnational supply chain. However, the channel preference of enterprises when constructing transnational supply chains depends not only on exchange rate risk and foreign price, but also on the drive of foreign demand attributes (demand scale and demand uncertainty). We also find that enterprises have a humanitarian "principle of equality" when considering the construction of transnational supply chains $ - $ the operational characteristics and channel structure of domestic supply chains will not affect whether and how enterprises build a new transnational supply chain.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The enterprise's local supply chain representation under distributor channels and direct sales channels

    Figure 2.  The enterprise's transnational supply chain representation in four different domestic and foreign channels

    Figure 3.  The supply quantity and profit of the enterprise as a function of $ w_{1 } $ (Note. $ c = 28, s = 20, p_{1 } = 50, \mu_{1 } = 800 $, and $ \sigma_{1 } = 500 $)

    Figure 4.  Comparison of supply strategies in home markets at different selling pric (Note. $ w_{1 } = 35, c = 28, s = 20, \mu_{1} = 1000 $, and $ \sigma_{1} = 300 $)

    Figure 5.  Comparison of supply quantity in host markets at different exchange rates (Note. $ p_{2 } = 40, w_{2 } = 30, c = 28, s = 20, \mu_{2 } = 800 $, and $ \sigma_{2 } = 200 $)

    Figure 6.  Channel choice under different trade-offs

    Figure 7.  The two functions $ g(x) $ and $ \pi_{d1}^{D}(q_{1}^{D}, x) $ will have two touch points at most (a total of two cases)

    Table 1.  Parameters and decisions variables

    Notation Description
    $ \theta $ The current exchange rate of the enterprise's country at the time of signing the wholesale price contract, i.e., one unit of the home currency is equal to $ \theta $ units of the host country currency
    $ \Delta\theta $ The exchange rate variation, $ \Delta\theta \in (-\theta, \infty) $
    $ q_{1 }^{D} $, $ q_{1 }^{S} $ The home market supply quantity for Models D and S, respectively, decision variables
    $ q_{1 }^{DD} $, $ q_{1 }^{DS} $, $ q_{1 }^{SD} $, $ q_{1 }^{SS} $ Home country supply quantity for Models DD, DS, SD, and SS respectively, decision variables
    $ q_{2 }^{DD} $, $ q_{2 }^{DS} $, $ q_{2 }^{SD} $, $ q_{2 }^{SS} $ Host country supply quantity for Models DD, DS, SD, and SS respectively, decision variables
    $ p_{1 } $, $ p_{2 } $ The retail prices per unit of product, expressed in the currency of the country in which the enterprise is located
    $ w_{1 } $, $ w_{2 } $ The enterprise's wholesale prices per unit of product, expressed in the currency of the country in which the enterprise is located, $ p_{i}>w_{i} $ ($ i=1, 2 $)
    $ c $ The enterprise's production cost per unit of product, expressed in the currency of the country in which the enterprise is located, $ w_{i}\geq c $ ($ i=1, 2 $)
    $ s $ The residual value per unit of product, expressed in the currency of the country in which the enterprise is located, $ s<c $
    $ \pi_{e }^{D} $, $ \pi_{e }^{S} $ The worst-case profit of enterprise under Models D and S, respectively
    $ \pi_{e }^{DD} $, $ \pi_{e }^{DS} $, $ \pi_{e }^{SD} $, $ \pi_{e }^{SS} $ The worst-case profit of enterprise under Models DD, DS, SD, and SS, respectively
    $ \pi_{d1 }^{DD} $, $ \pi_{d1 }^{DS} $, $ \pi_{d1 }^{SD} $, $ \pi_{d1 }^{SS} $ The worst-case profits of home country distributors under Models DD, DS, SD, and SS, respectively
    $ \pi_{d2 }^{DD} $, $ \pi_{d2 }^{DS} $, $ \pi_{d2 }^{SD} $, $ \pi_{d2 }^{SS} $ The worst-case profits of host country distributors under Models DD, DS, SD, and SS, respectively
    $ \widetilde{D_{1 }} $, $ \widetilde{D_{2 }} $ The home and host market demand, respectively, and neither is known until the selling season arrives, random variables
    $ \mu_{1} $, $ \mu_{2} $ Expected mean of the random market demand $ \widetilde{D_{i}} $ ($ i=1, 2 $)
    $ \sigma_{1} $, $ \sigma_{2} $ Standard deviation of the random market demand $ \widetilde{D_{i}} $ ($ i=1, 2 $)
    $ F_{1} $, $ F_{2} $ The distribution function of $ \widetilde{D_{i}} $ ($ i=1, 2 $), $ F_{i} $ ($ i=1, 2 $) is continuous, differentiable, and strictly increasing but uncertain
    $ \Gamma_{1}(\mu_{1}, \sigma_{1}^{2}) $, $ \Gamma_{2}(\mu_{2}, \sigma_{2}^{2}) $ The class of all distribution functions with mean $ \mu_{i} $ ($ i=1, 2 $) and variance $ \sigma_{i}^{2} $ ($ i=1, 2 $)
    $ \Gamma_{1+}(\mu_{1}, \sigma_{1}^{2}) $, $ \Gamma_{2+}(\mu_{2}, \sigma_{2}^{2}) $ The subclass of $ \Gamma_{i}(\mu_{i}, \sigma_{i}^{2}) $ ($ i=1, 2 $), i.e., $ \int_0^{+\infty}dF_{i}(x)=1 $ and $ \Gamma_{i+}(\mu_{i}, \sigma_{i}^{2})\subset \Gamma_{i}(\mu_{i}, \sigma_{i}^{2}) $ ($ i=1, 2 $)
    Note. The subscripts "1" and "2" represent the home and host markets parameters, respectively. The subscripts "d1", "d2", and "e" represent the home distributor, host distributor, and enterprise, respectively.
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal supply strategy for home market and host market

    Model Home market supply quantity Home market supply conditions Host market supply quantity Host market supply conditions
    D $ \mu_{1 }+\frac{\sigma_{1 }}{2}\left(\sqrt{\frac{p_{1 }-w_{1 }}{w_{1 }-s}}-\sqrt{\frac{w_{1 }-s}{p_{1 }-w_{1 }}}\right) $ $ (\frac{\sigma_{1}}{\mu_{1}})^{2}<\frac{p_{1}-w_{1}}{w_{1}-s} $ $ - $ $ - $
    S $ \mu_{1 }+\frac{\sigma_{1 }}{2}\left(\sqrt{\frac{p_{1 }-c}{c-s}}-\sqrt{\frac{c-s}{p_{1 }-c}}\right) $ $ (\frac{\sigma_{1}}{\mu_{1}})^{2}<\frac{p_{1}-c}{c-s} $ $ - $ $ - $
    DD $ \mu_{1 }+\frac{\sigma_{1 }}{2}\left(\sqrt{\frac{p_{1 }-w_{1 }}{w_{1 }-s}}-\sqrt{\frac{w_{1 }-s}{p_{1 }-w_{1 }}}\right) $ $ (\frac{\sigma_{1}}{\mu_{1}})^{2}<\frac{p_{1}-w_{1}}{w_{1}-s} $ $ \mu_{2 }+\frac{\sigma_{2 }}{2}\left(\sqrt{\frac{p_{2 }-w_{2 }}{w_{2 }-s}}-\sqrt{\frac{w_{2 }-s}{p_{2 }-w_{2 }}}\right) $ $ (\frac{\sigma_{2}}{\mu_{2}})^{2}<\frac{p_{2}-w_{2}}{w_{2}-s} $
    DS $ \mu_{1 }+\frac{\sigma_{1 }}{2}\left(\sqrt{\frac{p_{1 }-w_{1 }}{w_{1 }-s}}-\sqrt{\frac{w_{1 }-s}{p_{1 }-w_{1 }}}\right) $ $ (\frac{\sigma_{1}}{\mu_{1}})^{2}<\frac{p_{1}-w_{1}}{w_{1}-s} $ $ \mu_{2 }+\frac{\sigma_{2 }}{2}\left(\sqrt{\frac{p_{2 }\theta-c(\theta + \Delta \theta)}{(c-s)(\theta + \Delta \theta)}}-\sqrt{\frac{(c-s)(\theta + \Delta \theta)}{p_{2 }\theta-c(\theta + \Delta \theta)}}\right) $ $ (\frac{\sigma_{2}}{\mu_{2}})^{2}<\frac{p_{2}\theta-c(\theta+\Delta \theta)}{(c-s)(\theta+\Delta \theta)} $
    SD $ \mu_{1 }+\frac{\sigma_{1 }}{2}\left(\sqrt{\frac{p_{1 }-c}{c-s}}-\sqrt{\frac{c-s}{p_{1 }-c}}\right) $ $ (\frac{\sigma_{1}}{\mu_{1}})^{2}<\frac{p_{1}-c}{c-s} $ $ \mu_{2 }+\frac{\sigma_{2 }}{2}\left(\sqrt{\frac{p_{2 }-w_{2 }}{w_{2 }-s}}-\sqrt{\frac{w_{2 }-s}{p_{2 }-w_{2 }}}\right) $ $ (\frac{\sigma_{2}}{\mu_{2}})^{2}<\frac{p_{2}-w_{2}}{w_{2}-s} $
    SS $ \mu_{1 }+\frac{\sigma_{1 }}{2}\left(\sqrt{\frac{p_{1 }-c}{c-s}}-\sqrt{\frac{c-s}{p_{1 }-c}}\right) $ $ (\frac{\sigma_{1}}{\mu_{1}})^{2}<\frac{p_{1}-c}{c-s} $ $ \mu_{2 }+\frac{\sigma_{2 }}{2}\left(\sqrt{\frac{p_{2 }\theta-c(\theta + \Delta \theta)}{(c-s)(\theta + \Delta \theta)}}-\sqrt{\frac{(c-s)(\theta + \Delta \theta)}{p_{2 }\theta-c(\theta + \Delta \theta)}}\right) $ $ (\frac{\sigma_{2}}{\mu_{2}})^{2}<\frac{p_{2}\theta-c(\theta+\Delta \theta)}{(c-s)(\theta+\Delta \theta)} $
     | Show Table
    DownLoad: CSV

    Table 3.  Factors that enterprises weigh when deciding whether to build transnational supply chains

    Decide Exchange rate risk ($ \Delta \theta $) Foreign market prices ($ p_{2} $)
    Build Low High/Moderate
    Not build High Low
     | Show Table
    DownLoad: CSV

    Table 4.  Factors that enterprises weigh when deciding the channel choice of transnational supply chain

    Channel choice Exchange rate risk ($ \Delta \theta $) Foreign market prices ($ p_{2} $) Foreign demand scale ($ \mu_{2} $) Foreign demand uncertainty ($ \sigma_{2} $)
    DD (or SD) Low Moderate Large High
    DS (or SS) Low High Small Low
    Note. We divide foreign market prices into high, moderate, and low levels, divide exchange rate risk and foreign demand uncertainty into high and low levels, and divide foreign demand scale into large and small levels. The division of these levels is only convenient for understanding and elaboration, so it lacks accuracy.
     | Show Table
    DownLoad: CSV

    Table 5.  The influence of domestic and foreign markets on different decisions of enterprises

    Model choice Operational characteristics of domestic supply chain Channel structure of domestic supply chain Operational characteristics of foreign supply chain Exchange rate risk
    D (or S) $ \times $ $ \times $
    DD (or SD) $ \times $ $ \times $
    DS (or SS) $ \times $ $ \times $
    Note. The symbol "$\times$" means no impact, and the symbol "$√$" means yes.
     | Show Table
    DownLoad: CSV
  • [1] R. Ahmadi and B. R. Yang, Parallel imports: Challenges from unauthorized distribution channels, Mark. Sci., 19 (2000), 279-294. 
    [2] D. D. AlHashim, Internal performance evaluation in American multinational enterprises, Manag. Int. Rev., 20 (1980), 33-39. 
    [3] A. Arya and B. Mittendorf, Benefits of channel discord in the sale of durable goods, Mark. Sci., 25 (2006), 91-96. 
    [4] R. L. Autrey and F. Bova, Gray markets and multinational transfer pricing, Account. Rev., 87 (2012), 393-421. 
    [5] R. L. AutreyF. Bova and D. A. Soberman, When gray is good: Gray markets and market-creating investments, Prod. Oper. Manag., 24 (2015), 547-559. 
    [6] G. AydinK. Cattani and C. Druehl, Global supply chain management, Bus. Horiz., 57 (2014), 453-457. 
    [7] C. BusseM. C. SchleperM. Niu and S. M. Wagner, Supplier development for sustainability: Contextual barriers in global supply chains, Int. J. Phys. Distrib. Logist. Manag., 46 (2016), 442-468. 
    [8] K. CattaniW. GillandH. S. Heese and J. Waminathan, Boiling frogs: Pricing strategies for a manufacturer adding a direct channel that competes with the traditional channel, Prod. Oper. Manag., 15 (2006), 40-56. 
    [9] Y. Chen and K. E. Maskus, Vertical pricing and parallel imports, J. Int. Trade & Economic Development, 14 (2005), 1-18. 
    [10] J. M. Cruz, Mitigating global supply chain risks through corporate social responsibility, Int. J. Prod. Res., 51 (2013), 3995-4010. 
    [11] J. S. Dai and W. D. Meng, A risk-averse newsvendor model under marketing-dependency and price-dependency, Int. J. Prod. Econ., 160 (2015), 220-229. 
    [12] E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper. Res., 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.
    [13] P. DesaiO. Koenigsberg and D. Purohit, Strategic decentralization and channel coordination, Quant. Mark. Econ., 2 (2004), 5-22. 
    [14] M. Ganslandt and K. E. Maskus, Vertical distribution, parallel trade, and price divergence in integrated markets, Eur. Econ. Rev., 51 (2006), 943-970. 
    [15] A. Y. Ha, S. L. Tong and Y. J. Wang, Channel structures of online retail platforms, Manuf. Serv. Oper. Manag., (2021), 1-15.
    [16] M. Henig and Y. Gerchak, The structure of periodic review policies in the presence of random yield, Oper. Res., 38 (1990), 634-643.  doi: 10.1287/opre.38.4.634.
    [17] S. Kabadayi, Adding direct or independent channels to multiple channel mix, Direct Marking: An International Journal, 2 (2008), 66-80. 
    [18] M. KhoujaS. Park and G. G. Cai, Channel selection and pricing in the presence of retail-captive consumers, Int. J. Prod. Econ., 125 (2010), 84-95. 
    [19] B. Kogut and N. Kulatilaka, Operating flexibility, global manufacturing, and the option value of a multinational network, Manage. Sci., 40 (1994), 123-139. 
    [20] P. Kouvelis and G. J. Gutierrez, The newsvendor problem in a global market: Optimal centralized and decentralized control policies for a two-market stochastic inventory system, Manage. Sci., 43 (1997), 571-585. 
    [21] H. S. Lau and A. Lao, Reordering strategies for a newsboy-type product, Eur. J. Oper. Res., 103 (1997), 557-572. 
    [22] Z. M. LeiM. K. LimL. Cui and Y. Z. Wang, Modelling of risk transmission and control strategy in the transnational supply chain, Int. J. Prod. Res., 59 (2019), 148-167. 
    [23] G. LiL. Li and J. Sun, Pricing and service effort strategy in a dual-channel supply chain with showrooming effect, Transp. Res. Pt. e-Logist. Transp. Rev., 126 (2019), 32-48.  doi: 10.1142/S0218127420502417.
    [24] B. L. Maccarthy and W. Atthirawong, Factors affecting location decisions in international operations - a delphi study, Int. J. Oper. Prod. Manage., 23 (2003), 794-818. 
    [25] H. MamaniS. Nassiri and M. R. Wagner, Closed-form solutions for robust inventory management, Manage. Sci., 63 (2016), 1625-1643.  doi: 10.1287/opre.2017.1669.
    [26] I. Manuj and J. T. Mentzer, Global supply chain risk management strategies, Int. J. Phys. Distrib. Logist. Manag., 38 (2008), 192-223. 
    [27] G. Matteucci and P. Reverberi, Parallel trade, product quality, and welfare, Econ. Lett., 122 (2014), 258-262.  doi: 10.1016/j.econlet.2013.12.004.
    [28] N. M. Modak and P. Kelle, Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand, Eur. J. Oper. Res., 272 (2019), 147-161.  doi: 10.1016/j.ejor.2018.05.067.
    [29] E. PraterM. Biehl and M. A. Smith, International supply chain agility, trade offs between flexibility and uncertainty, Int. J. Oper. Prod. Manage., 21 (2001), 823-839. 
    [30] R. Z. Qiu, L. H. Hou, Y. M. Sun, M. H. Sun and Y. Sun, Joint pricing, ordering and order fulfillment decisions for a dual-channel supply chain with demand uncertainties: A distribution-free approach, Comput. Ind. Eng., 160 (2021).
    [31] A. RidderE. Van der Laan and M. Salomon, How larger demand variability may lead to lower costs in the newsvendor problem, Oper. Res., 46 (1998), 934-936. 
    [32] H. Scarf, A min-max solution of an inventory problem, in The Mathematical Theory of Inventory and Production, Stanford University Press, 1958,201-209.
    [33] T. M. Whitin, Inventory control and price theory, Manage. Sci., 2 (1955), 61-68. 
    [34] B. Zeng and B. Yen, Rethinking the role of partnerships in global supply chains: A risk-based perspective, Int. J. Prod. Econ., 185 (2017), 52-62. 
    [35] Y. Zhang and B. Hezarkhani, Competition in dual-channel supply chains: The manufacturers' channel selection, Eur. J. Oper. Res., 291 (2020), 244-262.  doi: 10.1016/j.ejor.2020.09.031.
  • 加载中

Figures(7)

Tables(5)

SHARE

Article Metrics

HTML views(124) PDF downloads(138) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return