\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Stackelberg reinsurance-investment game under Heston's stochastic volatility model

  • *Corresponding author: Sheng Li

    *Corresponding author: Sheng Li

The Sheng Li is supported by the project of the Chengdu University of Information Technology Introducing Talents to Launch Scientific Research (KYTZ202193)

Abstract Full Text(HTML) Figure(7) / Table(3) Related Papers Cited by
  • This paper studies the optimal reinsurance-investment problem under Heston's stochastic volatility (SV) in the framework of Stackelberg stochastic differential game, in which an insurer and a reinsurer are the two players. The aim of the insurer as the follower in the game is to find the optimal reinsurance strategy and investment strategy such that its mean-variance cost functional is maximized, while the aim of the reinsurer as the leader is to maximize its mean-variance cost functional through finding its optimal premium pricing strategy and investment strategy. To overcome the time-inconsistency problem in the game, we derive the optimization problems of the two players as embedded games and obtain the corresponding extended Hamilton–Jacobi–Bellman (HJB) equations. Then we present the verification theorem and get the equilibrium reinsurance-investment strategies and the corresponding value functions of both the insurer and the reinsurer. Finally, we provide some numerical examples to draw the findings.

    Mathematics Subject Classification: Primary: 91A23, 93E20; Secondary: 97M30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The effects of $ k $ and $ m_1 $ on $ \pi_2^*(0) $

    Figure 2.  The effects of $ k $ and $ m_2 $ on $ \pi_2^*(0) $

    Figure 3.  The effects of $ k $ and $ m_1 $ on $ \pi_1^*(0) $

    Figure 4.  The effects of $ k $ and $ m_2 $ on $ \pi_1^*(0) $

    Figure 5.  The effects of time horizon $ T $ on $ \pi_i^*(0) $, for $ i\in{1, 2} $

    Figure 6.  The effects of decision time $ t $ on $ \pi_i^*(t) $, for $ i\in{1, 2} $

    Figure 7.  Effects of time $ t $ on $ p^*(t) $and $ q^*(t) $

    Table 1.  The optimal premium strategy and reinsurance strategy in the insurance market under different cases

    Cases $ p^*(t) $ $ q^*(t) $
    (1)$ H^\theta\geq 1 $ $ \forall p\in [c, \bar c] $ 1
    (2) $ H^{\bar\theta}\leq H $ $ \bar c $ $ \frac{H^{\bar\theta}+k}{1+k} $
    (3)$ H\leq H^{\theta}<1 $ $ c $ $ \frac{H^\theta+k}{1+k} $
    (4)$ H^\theta<H<H^{\bar\theta} $ $ \lambda\mu+m_1\lambda\sigma_1^2D(t)H $ $ \frac{(1+2k)m_1+m_2}{2(1+k)m_1+m_2} $
     | Show Table
    DownLoad: CSV

    Table 2.  Model parameters

    Financial market
    $ t $ $ T $ $ r $ $ \alpha $ $ \beta $ $ \delta $ $ \sigma_2 $ $ \rho $ $ s_0 $ $ l_0 $
    0 10 0.05 1.5 2 0.03 1.5 0.3 1 1
    Insurance market
    $ \mu $ $ \lambda $ $ \theta $ $ \bar\theta $ $ \sigma_1 $ $ m_1 $ $ m_2 $ $ k $
    2 3 0.1 0.2 1 0.6 0.4 0.4
     | Show Table
    DownLoad: CSV

    Table 3.  Numerical results corresponding to Figure 7

    $ t $ 0 1 2 3 4 5 6 7 8 9 10
    $ H $ 0.5962 0.5962 0.5962 0.5962 0.5962 0.5962 0.5962 0.5962 0.5962 0.5962 0.5962
    $ H^{\theta} $ 0.2125 0.2234 0.2349 0.2469 0.2596 0.2729 0.2869 0.3016 0.3171 0.3333 0.3504
    $ H^{\bar\theta} $ 0.4250 0.4469 0.4698 0.4939 0.5192 0.5458 0.5738 0.6032 0.6342 0.6667 0.7008
    $ p^*(t) $ 7.2000 7.2000 7.2000 7.2000 7.2000 7.2000 7.2000 7.1859 7.1281 7.0731 7.0207
    $ q^*(t) $ 0.5893 0.6049 0.6213 0.6385 0.6566 0.6756 0.6956 0.7115 0.7115 0.7115 0.7115
     | Show Table
    DownLoad: CSV
  • [1] L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.  doi: 10.1016/j.insmatheco.2007.11.002.
    [2] Y. BaiZ. Zhou and H. Xiao, A Stackelberg reinsurance–investment game with asymmetric information and delay, Optimization, 70 (2021), 2131-2168.  doi: 10.1080/02331934.2020.1777125.
    [3] N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.
    [4] A. BensoussanC. C. SiuS. C. P. Yam and H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50 (2014), 2025-2037.  doi: 10.1016/j.automatica.2014.05.033.
    [5] J. BiQ. Meng and Y. Zhang, Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer, Annals of Operations Research, 212 (2014), 43-59.  doi: 10.1007/s10479-013-1338-z.
    [6] T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.
    [7] T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.
    [8] M. Brachetta and C. Ceci, Optimal excess-of-loss reinsurance for stochastic factor risk models, Risks, 7 (2019), 48. 
    [9] S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.
    [10] L. Chen and Y. Shen, On a new paradigm of optimal reinsurance: A stochastic Stackelberg differential game between an insurer and a reinsurer, ASTIN Bulletin: The Journal of the IAA, 48 (2018), 905-960.  doi: 10.1017/asb.2018.3.
    [11] L. Chen and Y. Shen, Stochastic Stackelberg differential reinsurance games under time-inconsistent mean-variance framework, Insurance: Mathematics and Economics, 88 (2019), 120-137.  doi: 10.1016/j.insmatheco.2019.06.006.
    [12] C. DengX. Zeng and H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, European Journal of Operational Research, 264 (2018), 1144-1158.  doi: 10.1016/j.ejor.2017.06.065.
    [13] R. J. Elliott and T. K. Siu, A BSDE approach to a risk-based optimal investment of an insurer, Automatica, 47 (2011), 253-261.  doi: 10.1016/j.automatica.2010.10.032.
    [14] K. R. FrenchG. W. Schwert and R. F. Stambaugh, Expected stock returns and volatility, Journal of financial Economics, 19 (1987), 3-29. 
    [15] J. Grandell, Aspects of Risk Theory, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4613-9058-9.
    [16] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.
    [17] Y. HuangX. Yang and J. Zhou, Robust optimal investment and reinsurance problem for a general insurance company under Heston model, Mathematical Methods of Operations Research, 85 (2017), 305-326.  doi: 10.1007/s00186-017-0570-8.
    [18] D. LiX. RongH. Zhao and B. Yi, Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model, Insurance: Mathematics and Economics, 72 (2017), 6-20.  doi: 10.1016/j.insmatheco.2016.10.007.
    [19] L. Mao and Y. Zhang, Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model, Quantitative Finance and Economics, 5 (2021), 134-162.  doi: 10.1016/j.cam.2020.113082.
    [20] H. MengS. Li and Z. Jin, A reinsurance game between two insurance companies with nonlinear risk processes, Insurance: Mathematics and Economics, 62 (2015), 91-97.  doi: 10.1016/j.insmatheco.2015.03.008.
    [21] M. Taksar and X. Zeng, Optimal non-proportional reinsurance control and stochastic differential games, Insurance: Mathematics and Economics, 48 (2011), 64-71.  doi: 10.1016/j.insmatheco.2010.09.006.
    [22] N. WangN. ZhangZ. Jin and L. Qian, Reinsurance-investment game between two mean-variance insurers under model uncertainty, Journal of Computational and Applied Mathematics, 382 (2021), 113095.  doi: 10.1016/j.cam.2020.113095.
    [23] M. YanF. Peng and S. Zhang, A reinsurance and investment game between two insurance companies with the different opinions about some extra information, Insurance: Mathematics and Economics, 75 (2017), 58-70.  doi: 10.1016/j.insmatheco.2017.04.002.
    [24] H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.
    [25] B. YiZ. LiF.G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.
    [26] Y. YuanZ. Liang and X. Han, Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game, Scandinavian Actuarial Journal, 4 (2022), 328-355.  doi: 10.1080/03461238.2021.1971756.
    [27] J. ZhouX. ZhangY. HuangX. Xiang and Y. Deng, Optimal investment and risk control policies for an insurer in an incomplete market, Optimization, 68 (2019), 1625-1652.  doi: 10.1080/02331934.2019.1581778.
    [28] H. ZhuM. Cao and C. Zhang, Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2019), 280-291.  doi: 10.1080/03610926.2017.1324987.
  • 加载中

Figures(7)

Tables(3)

SHARE

Article Metrics

HTML views(1303) PDF downloads(341) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return