[1]
|
L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.
|
[2]
|
Y. Bai, Z. Zhou and H. Xiao, A Stackelberg reinsurance–investment game with asymmetric information and delay, Optimization, 70 (2021), 2131-2168.
doi: 10.1080/02331934.2020.1777125.
|
[3]
|
N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.
doi: 10.1007/s00186-005-0446-1.
|
[4]
|
A. Bensoussan, C. C. Siu, S. C. P. Yam and H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50 (2014), 2025-2037.
doi: 10.1016/j.automatica.2014.05.033.
|
[5]
|
J. Bi, Q. Meng and Y. Zhang, Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer, Annals of Operations Research, 212 (2014), 43-59.
doi: 10.1007/s10479-013-1338-z.
|
[6]
|
T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5.
|
[7]
|
T. Björk, A. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.
|
[8]
|
M. Brachetta and C. Ceci, Optimal excess-of-loss reinsurance for stochastic factor risk models, Risks, 7 (2019), 48.
|
[9]
|
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.
|
[10]
|
L. Chen and Y. Shen, On a new paradigm of optimal reinsurance: A stochastic Stackelberg differential game between an insurer and a reinsurer, ASTIN Bulletin: The Journal of the IAA, 48 (2018), 905-960.
doi: 10.1017/asb.2018.3.
|
[11]
|
L. Chen and Y. Shen, Stochastic Stackelberg differential reinsurance games under time-inconsistent mean-variance framework, Insurance: Mathematics and Economics, 88 (2019), 120-137.
doi: 10.1016/j.insmatheco.2019.06.006.
|
[12]
|
C. Deng, X. Zeng and H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, European Journal of Operational Research, 264 (2018), 1144-1158.
doi: 10.1016/j.ejor.2017.06.065.
|
[13]
|
R. J. Elliott and T. K. Siu, A BSDE approach to a risk-based optimal investment of an insurer, Automatica, 47 (2011), 253-261.
doi: 10.1016/j.automatica.2010.10.032.
|
[14]
|
K. R. French, G. W. Schwert and R. F. Stambaugh, Expected stock returns and volatility, Journal of financial Economics, 19 (1987), 3-29.
|
[15]
|
J. Grandell, Aspects of Risk Theory, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4613-9058-9.
|
[16]
|
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[17]
|
Y. Huang, X. Yang and J. Zhou, Robust optimal investment and reinsurance problem for a general insurance company under Heston model, Mathematical Methods of Operations Research, 85 (2017), 305-326.
doi: 10.1007/s00186-017-0570-8.
|
[18]
|
D. Li, X. Rong, H. Zhao and B. Yi, Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model, Insurance: Mathematics and Economics, 72 (2017), 6-20.
doi: 10.1016/j.insmatheco.2016.10.007.
|
[19]
|
L. Mao and Y. Zhang, Robust optimal excess-of-loss reinsurance and investment problem with p-thinning dependent risks under CEV model, Quantitative Finance and Economics, 5 (2021), 134-162.
doi: 10.1016/j.cam.2020.113082.
|
[20]
|
H. Meng, S. Li and Z. Jin, A reinsurance game between two insurance companies with nonlinear risk processes, Insurance: Mathematics and Economics, 62 (2015), 91-97.
doi: 10.1016/j.insmatheco.2015.03.008.
|
[21]
|
M. Taksar and X. Zeng, Optimal non-proportional reinsurance control and stochastic differential games, Insurance: Mathematics and Economics, 48 (2011), 64-71.
doi: 10.1016/j.insmatheco.2010.09.006.
|
[22]
|
N. Wang, N. Zhang, Z. Jin and L. Qian, Reinsurance-investment game between two mean-variance insurers under model uncertainty, Journal of Computational and Applied Mathematics, 382 (2021), 113095.
doi: 10.1016/j.cam.2020.113095.
|
[23]
|
M. Yan, F. Peng and S. Zhang, A reinsurance and investment game between two insurance companies with the different opinions about some extra information, Insurance: Mathematics and Economics, 75 (2017), 58-70.
doi: 10.1016/j.insmatheco.2017.04.002.
|
[24]
|
H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009.
|
[25]
|
B. Yi, Z. Li, F.G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011.
|
[26]
|
Y. Yuan, Z. Liang and X. Han, Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game, Scandinavian Actuarial Journal, 4 (2022), 328-355.
doi: 10.1080/03461238.2021.1971756.
|
[27]
|
J. Zhou, X. Zhang, Y. Huang, X. Xiang and Y. Deng, Optimal investment and risk control policies for an insurer in an incomplete market, Optimization, 68 (2019), 1625-1652.
doi: 10.1080/02331934.2019.1581778.
|
[28]
|
H. Zhu, M. Cao and C. Zhang, Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2019), 280-291.
doi: 10.1080/03610926.2017.1324987.
|