[1]
|
Ö. Ş. Akpunar and Ş. Akpinar, A hybrid adaptive large neighbourhood search algorithm for the capacitated location routing problem, Expert Systems with Applications, 168 (2021), 114304.
doi: 10.1016/j.eswa.2020.114304.
|
[2]
|
C. Bierwirth and F. Meisel, A follow-up survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research, 244 (2015), 675-689.
doi: 10.1016/j.ejor.2014.12.030.
|
[3]
|
J. H. Chen, D.-H. Lee and J. X. Cao, A combinatorial benders' cuts algorithm for the quayside operation problem at container terminals, Transportation Research Part E: Logistics and Transportation Review, 48 (2012), 266-275.
doi: 10.1016/j.tre.2011.06.004.
|
[4]
|
S. W. Cho, H. J. Park and C. Lee, An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals, Maritime Economics & Logistics, 23 (2021), 123-153.
doi: 10.1057/s41278-020-00173-4.
|
[5]
|
E. Demir, T. Bektaş and G. Laporte, An adaptive large neighborhood search heuristic for the pollution-routing problem, European Journal of Operational Research, 223 (2012), 346-359.
doi: 10.1016/j.ejor.2012.06.044.
|
[6]
|
M. Golias, I. Portal, D. Konur, E. Kaisar and G. Kolomvos, Robust berth scheduling at marine container terminals via hierarchical optimization, Computers & Operations Research, 41 (2014), 412-422.
doi: 10.1016/j.cor.2013.07.018.
|
[7]
|
X.-l. Han, Z.-q. Lu and L.-f. Xi, A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time, European Journal of Operational Research, 207 (2010), 1327-1340.
|
[8]
|
J. He, C. Tan, W. Yan, W. Huang, M. Liu and H. Yu, Two-stage stochastic programming model for generating container yard template under uncertainty and traffic congestion, Advanced Engineering Informatics, 43 (2020), 101032.
doi: 10.1016/j.aei.2020.101032.
|
[9]
|
M. Hendriks, M. Laumanns, E. Lefeber and J. T. Udding, Robust cyclic berth planning of container vessels, OR spectrum, 32 (2010), 501-517.
doi: 10.1007/s00291-010-0198-z.
|
[10]
|
Q.-M. Hu, Z.-H. Hu and Y. Du, Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels, Computers & Industrial Engineering, 70 (2014), 1-10.
doi: 10.1016/j.cie.2014.01.003.
|
[11]
|
IMF, Global Trade's Recovery Hits Record High, Managing divergent recoveries, Washington, DC, 2021.
|
[12]
|
Ç. Iris and J. S. L. Lam, Recoverable robustness in weekly berth and quay crane planning, Transportation Research Part B: Methodological, 122 (2019), 365-389.
doi: 10.1016/j.trb.2019.02.013.
|
[13]
|
Ç. Iris, D. Pacino and S. Ropke, Improved formulations and an adaptive large neighborhood search heuristic for the integrated berth allocation and quay crane assignment problem, Transportation Research Part E: Logistics and Transportation Review, 105 (2017), 123-147.
doi: 10.1016/j.tre.2017.06.013.
|
[14]
|
J. Karafa, M. M. Golias, S. Ivey, G. K. Saharidis and N. Leonardos, The berth allocation problem with stochastic vessel handling times, The International Journal of Advanced Manufacturing Technology, 65 (2013), 473-484.
doi: 10.1007/s00170-012-4186-0.
|
[15]
|
C.-Y. Lee and D.-P. Song, Ocean container transport in global supply chains: Overview and research opportunities, Transportation Research Part B: Methodological, 95 (2017), 442-474.
doi: 10.1016/j.trb.2016.05.001.
|
[16]
|
H. Li, C. Zhou, B. K. Lee, L. H. Lee, E. P. Chew and R. S. M. Goh, Capacity planning for mega container terminals with multi-objective and multi-fidelity simulation optimization, Iise Transactions, 49 (2017), 849-862.
doi: 10.1080/24725854.2017.1318229.
|
[17]
|
M. Z. Li, J. G. Jin and C. X. Lu, Real-time disruption recovery for integrated berth allocation and crane assignment in container terminals, Transportation Research Record, 2479 (2015), 49-59.
doi: 10.3141/2479-07.
|
[18]
|
C. Liang, Y. Huang and Y. Yang, A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning, Computers & Industrial Engineering, 56 (2009), 1021-1028.
doi: 10.1016/j.cie.2008.09.024.
|
[19]
|
C. Liu, L. Zheng and C. Zhang, Behavior perception-based disruption models for berth allocation and quay crane assignment problems, Computers & Industrial Engineering, 97 (2016), 258-275.
doi: 10.1016/j.cie.2016.04.008.
|
[20]
|
R. Masson, F. Lehuédé and O. Péton, An adaptive large neighborhood search for the pickup and delivery problem with transfers, Transportation Science, 47 (2013), 344-355.
doi: 10.1287/trsc.1120.0432.
|
[21]
|
G. R. Mauri, G. M. Ribeiro, L. A. N. Lorena and G. Laporte, An adaptive large neighborhood search for the discrete and continuous berth allocation problem, Computers & Operations Research, 70 (2016), 140-154.
doi: 10.1016/j.cor.2016.01.002.
|
[22]
|
G. Mejía and F. Yuraszeck, A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop scheduling problems with travel/setup times, European Journal of Operational Research, 285 (2020), 484-496.
doi: 10.1016/j.ejor.2020.02.010.
|
[23]
|
F. Rodrigues and A. Agra, An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times, European Journal of Operational Research, 295 (2021), 499-516.
doi: 10.1016/j.ejor.2021.03.016.
|
[24]
|
M. Rodriguez-Molins, M. A. Salido and F. Barber, Robust scheduling for berth allocation and quay crane assignment problem, Mathematical Problems in Engineering, 2014 (2014), Art. ID 834927, 17 pp.
doi: 10.1155/2014/834927.
|
[25]
|
X. T. Shang, J. X. Cao and J. Ren, A robust optimization approach to the integrated berth allocation and quay crane assignment problem, Transportation Research Part E: Logistics and Transportation Review, 94 (2016), 44-65.
doi: 10.1016/j.tre.2016.06.011.
|
[26]
|
J. F. Sze, S. Salhi and N. Wassan, A hybridisation of adaptive variable neighbourhood search and large neighbourhood search: Application to the vehicle routing problem, Expert Systems with Applications, 65 (2016), 383-397.
doi: 10.1016/j.eswa.2016.08.060.
|
[27]
|
C. Tan and J. He, Integrated proactive and reactive strategies for sustainable berth allocation and quay crane assignment under uncertainty, Annals of Operations Research, (2021), 1-32.
doi: 10.1007/s10479-020-03891-3.
|
[28]
|
G. Tasoglu and G. Yildiz, Simulated annealing based simulation optimization method for solving integrated berth allocation and quay crane scheduling problems, Simulation Modelling Practice and Theory, 97 (2019), 101948.
doi: 10.1016/j.simpat.2019.101948.
|
[29]
|
Y. B. Türkoğulları, Z. C. Taşkın, N. Aras and İ. K. Altınel, Optimal berth allocation and time-invariant quay crane assignment in container terminals, European Journal of Operational Research, 235 (2014), 88-101.
doi: 10.1016/j.ejor.2013.10.015.
|
[30]
|
Y. B. Türkoğulları, Z. C. Taşkın, N. Aras and İ. K. Altınel, Optimal berth allocation, time-variant quay crane assignment and scheduling with crane setups in container terminals, European Journal of Operational Research, 254 (2016), 985-1001.
doi: 10.1016/j.ejor.2016.04.022.
|
[31]
|
N. Umang, M. Bierlaire and A. L. Erera, Real-time management of berth allocation with stochastic arrival and handling times, Journal of Scheduling, 20 (2017), 67-83.
doi: 10.1007/s10951-016-0480-2.
|
[32]
|
UNCTAD, Global Trade's Recovery Hits Record High, Global Trade Update, United Nations, New York and Geneva, 2021.
|
[33]
|
E. Ursavas and S. X. Zhu, Optimal policies for the berth allocation problem under stochastic nature, European Journal of Operational Research, 255 (2016), 380-387.
doi: 10.1016/j.ejor.2016.04.029.
|
[34]
|
K. Wang, L. Zhen, S. Wang and G. Laporte, Column generation for the integrated berth allocation, quay crane assignment, and yard assignment problem, Transportation Science, 52 (2018), 812-834.
doi: 10.1287/trsc.2018.0822.
|
[35]
|
Z. Wang and C. Guo, Minimizing the risk of seaport operations efficiency reduction affected by vessel arrival delay, Industrial Management & Data Systems, 118 (2018), 1498-1509.
doi: 10.1108/IMDS-12-2017-0563.
|
[36]
|
X. Xiang and C. Liu, An almost robust optimization model for integrated berth allocation and quay crane assignment problem, Omega, 104 (2021), 102455.
doi: 10.1016/j.omega.2021.102455.
|
[37]
|
X. Xiang, C. Liu and L. Miao, Reactive strategy for discrete berth allocation and quay crane assignment problems under uncertainty, Computers & Industrial Engineering, 126 (2018), 196-216.
doi: 10.1016/j.cie.2018.09.033.
|
[38]
|
X. Xiang, C. Liu and L. Miao, A bi-objective robust model for berth allocation scheduling under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 294-319.
doi: 10.1016/j.tre.2017.07.006.
|
[39]
|
Y. Xu, Q. Chen and X. Quan, Robust berth scheduling with uncertain vessel delay and handling time, Annals of Operations Research, 192 (2012), 123-140.
doi: 10.1007/s10479-010-0820-0.
|
[40]
|
H. Yang, V. Low, C. Zhang, L. Zheng and L. Miao, Behaviour perception-based disruption models for the parallel machine capacitated lot-sizing and scheduling problem, International Journal of Production Research, 55 (2017), 3058-3072.
doi: 10.1080/00207543.2016.1234083.
|
[41]
|
Q. Zeng, Z. Yang and X. Hu, Disruption recovery model for berth and quay crane scheduling in container terminals, Engineering Optimization, 43 (2011), 967-983.
doi: 10.1080/0305215X.2010.528411.
|
[42]
|
L. Zhen and D.-F. Chang, A bi-objective model for robust berth allocation scheduling, Computers & Industrial Engineering, 63 (2012), 262-273.
doi: 10.1016/j.cie.2012.03.003.
|
[43]
|
P.-f. Zhou and H.-g. Kang, Study on berth and quay-crane allocation under stochastic environments in container terminal, Systems Engineering-Theory & Practice, 28 (2008), 161-169.
doi: 10.1016/S1874-8651(09)60001-6.
|
[44]
|
I. Žulj, S. Kramer and M. Schneider, A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem, European Journal of Operational Research, 264 (2018), 653-664.
doi: 10.1016/j.ejor.2017.06.056.
|