[1]
|
A. Akkas, Shelf space selection to control product expiration, Prod. Oper. Manag., 28 (2019), 2184-2201.
doi: 10.1111/poms.13034.
|
[2]
|
E. Avraham and T. Raviv, The data-driven time-dependent traveling salesperson problem, Transp. Res. Part B, 134 (2020), 25-40.
doi: 10.1016/j.trb.2020.01.005.
|
[3]
|
V. Batagelj, Networks/Pajek Program for Large Network Analysis, 2018. Available from: http://vlado.fmf.uni-lj.si/pub/networks/pajek/.
|
[4]
|
S. Belhaiza, R. M'Hallah, G. Ben Brahim and G. Laporte, Three multi-start data-driven evolutionary heuristics for the vehicle routing problem with multiple time windows, J. Heuristics, 25 (2019), 485-515.
doi: 10.1007/s10732-019-09412-1.
|
[5]
|
J. G. Carlsson and E. Delage, Robust partitioning for stochastic multivehicle routing, Oper. Res., 61 (2013), 727-744.
doi: 10.1287/opre.2013.1160.
|
[6]
|
L. Chen, Fixing phantom stockouts: Optimal data-driven shelf inspection policies, Prod. Oper. Manag., 30 (2021), 689-702.
doi: 10.1111/poms.13310.
|
[7]
|
Q. Chen, B. G. De Soto and B. T. Adey, Supplier-contractor coordination approach to managing demand fluctuations of ready-mix concrete, Autom. Constr., 121 (2021), 103423.
doi: 10.1016/j.autcon.2020.103423.
|
[8]
|
H. Chu, W. Zhang, P. Bai and Y. Chen, Data-driven optimization for last-mile delivery, Complex. Intell. Syste., (2021).
doi: 10.1007/s40747-021-00293-1.
|
[9]
|
H. H.-C. Chuang, R. Oliva and O. Perdikaki, Traffic-based labor planning in retail stores, Prod. Oper. Manag., 25 (2016), 96-113.
doi: 10.1111/poms.12403.
|
[10]
|
I. Cobanoglu, I. Gure and V. Bayram, Data driven storage location assignment problem considering order picking frequencies: A heuristic approach, Pamukkale University J. Eng. Sci., 27 (2021), 520-531.
doi: 10.5505/pajes.2021.34979.
|
[11]
|
A. Dolgui, F. Sgarbossa and M. Simonetto, Design and management of assembly systems 4.0: Systematic literature review and research agenda, Int. J. Prod. Res., 60 (2021), 184-210.
doi: 10.1080/00207543.2021.1990433.
|
[12]
|
Y. Feng, Q. Zhu and K.-H. Lai, Corporate social responsibility for supply chain management: A literature review and bibliometric analysis, J. Clean. Prod., 158 (2017), 296-307.
doi: 10.1016/j.jclepro.2017.05.018.
|
[13]
|
V. M. S. Gandra, H. Calik, T. Wauters, T. A. M. Toffolo, M. A. M. Carvalho and G. Vanden Berghe, The impact of loading restrictions on the two-echelon location routing problem, Comput. Ind. Eng., 160 (2021), 107609.
doi: 10.1016/j.cie.2021.107609.
|
[14]
|
C. Gkerekos and I. Lazakis, A novel, data-driven heuristic framework for vessel weather routing, Ocean Eng., 197 (2020), 106887.
doi: 10.1016/j.oceaneng.2019.106887.
|
[15]
|
F. Gong, D. S. Kung and T. Zeng, The impact of different contract structures on IT investment in logistics outsourcing, Int. J. Prod. Eco., 195 (2018), 158-167.
doi: 10.1016/j.ijpe.2017.10.009.
|
[16]
|
T. He, J. Bao, S. Ruan, R. Li, Y. Li, H. He and Y. Zheng, Interactive bike lane planning using sharing bikes' trajectories, IEEE Trans. Knowl. Data. Eng., 32 (2020), 1529-1542.
doi: 10.1109/TKDE.2019.2907091.
|
[17]
|
K. Huang, J. Wu, X. Yang, Z. Gao, F. Liu and Y. Zhu, Discrete train speed profile optimization for urban rail transit: A data-driven model and integrated algorithms based on machine learning, J. Adv. Transp., 2019 (2019), 7258986.
doi: 10.1155/2019/7258986.
|
[18]
|
Y. Kou and Z. Wan, A new data-driven robust optimization approach to multi-item newsboy problems, J. Ind. Manag. Optim., 19 (2023), 197-223.
doi: 10.3934/jimo.2021180.
|
[19]
|
F. Lejarza, I. Pistikopoulos and M. Baldea, Scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study, Int. J. Prod. Econ., 240 (2021), 108212.
doi: 10.1016/j.ijpe.2021.108212.
|
[20]
|
R. Levi, G. Perakis and J. Uichancoi, The data-driven newsvendor problem: New bounds and insights, Oper. Res., 63 (2015), 1294-1306.
doi: 10.1287/opre.2015.1422.
|
[21]
|
H. Li, L. Mai, W. Zhang and X. Tian, Optimizing the credit term decisions in supply chain finance, J. Purch. Supply. Manag., 25 (2019), 146-156.
doi: 10.1016/j.pursup.2018.07.006.
|
[22]
|
H. Lin and C. Tang, Intelligent bus operation optimization by integrating cases and data driven based on business chain and enhanced quantum genetic algorithm, Trans. Intell. Transp. Syst., 23 (2022), 9869-9882.
doi: 10.1109/TITS.2021.3121289.
|
[23]
|
L. Liu and S. Mei, Visualising the GVC research: A co-occurrence network based bibliometric analysis, Scientometrics, 109 (2016), 953-977.
doi: 10.1007/s11192-016-2100-5.
|
[24]
|
S. Liu, Z. J. M. Shen and X. Ji, Urban bike lane planning with bike trajectories: Models, algorithms, and a real-world case study, to appear, Manuf. Serv. Oper. Manag.
|
[25]
|
M. Matusiak, R. de Koster and J. Saarinen, Utilizing individual picker skills to improve order batching in a warehouse, Eur. J. Oper. Res., 263 (2017), 888-899.
doi: 10.1016/j.ejor.2017.05.002.
|
[26]
|
D. Merchan and M. Winkenbach, An empirical validation and data-driven extension of continuum approximation approaches for urban route distances, Networks, 73 (2019), 418-433.
doi: 10.1002/net.21874.
|
[27]
|
M. Miotti, Z. A. Needell, S. Ramakrishnan, J. Heywood and J. E. Trancik, Quantifying the impact of driving style changes on light-duty vehicle fuel consumption, Transp. Res. D. Transp. Environ., 98 (2021), 102918.
doi: 10.1016/j.trd.2021.102918.
|
[28]
|
S. M. Mirhedayatian, T. G. Crainic, M. Guajardo and S. W. Wallace, A two-echelon location-routing problem with synchronisation, J. Oper. Res. Soc., 72 (2021), 145-160.
doi: 10.1080/01605682.2019.1650625.
|
[29]
|
W. de Nooy, A. Mrvar and V. Batagelj, Explarotary Social Network Analysis with Pajek, 2 edition, Cambridge University Press, New York, 2011.
doi: 10.1017/CBO9780511996368.
|
[30]
|
L. G. N. Orozco, F. Battiston, G. Iniguez and M. Szell, Data-driven strategies for optimal bicycle network growth, R. Soc. Open. Sci., 7 (2020), 201130.
doi: 10.1098/rsos.201130.
|
[31]
|
E. Ozgormus and A. E. Smith, A data-driven approach to grocery store block layout, Comput. Ind. Eng., 139 (2020), 105562.
doi: 10.1016/j.cie.2018.12.009.
|
[32]
|
S. K. Paul, R. Sarker and D. Essam, Managing risk and disruption in production-inventory and supply chain systems: A review, J. Ind. Manag. Optim., 12 (2016), 1009-1029.
doi: 10.3934/jimo.2016.12.1009.
|
[33]
|
B. S. Perelman, A. W. Evans and K. E. Schaefer, Where do you think you're going? Characterizing spatial mental models from planned routes, ACM Trans. Hum., 9 (2020), 1-55.
doi: 10.1145/3385008.
|
[34]
|
H. N. Perera, B. Fahimnia and T. Tokar, Inventory and ordering decisions: A systematic review on research driven through behavioral experiments, Int. J. Oper. Prod., 40 (2020), 997-1039.
doi: 10.1108/IJOPM-05-2019-0339.
|
[35]
|
O. Persson, Bib-Excel, 2018. Available from: http://homepage.univie.ac.at/juan.gorraiz/bibexcel/.
|
[36]
|
O. Persson, R. Danell and J. W. Schneider, How to use Bibexcel for various types of bibliometric analysis. In: Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at His 60th Birthday, International Society for Scientometrics and Informetrics, Sweden, 2009.
|
[37]
|
G. Pesant, M. Gendreau, J. Y. Potvin and J. M. Rousseau, An exact constraint logic programming algorithm for the traveling salesman problem with time windows, Transp. Sci., 32 (1998), 12-29.
doi: 10.1287/trsc.32.1.12.
|
[38]
|
P. Pinakpani, A. Polisetty, G. B. N. Rao, D. H. Sunil, B. M. Kumar, D. Deepthi and A. Sidhireddy, An algorithmic approach for maritime transportation, Int. J. Adv. Comput. Sci. Appl., 11 (2020), 764-775.
doi: 10.14569/IJACSA.2020.0110296.
|
[39]
|
S. Punia, S. P. Singh and J. K. Madaan, From predictive to prescriptive analytics: A data-driven multi-item newsvendor model, Decis. Support Syst., 136 (2020), 113340.
doi: 10.1016/j.dss.2020.113340.
|
[40]
|
V. Ramamurthy, J. G. Shanthikumar and Z. J. M. Shen, Inventory policy with parametric demand: Operational statistics, linear correction, and regression, Prod. Oper. Manag., 21 (2012), 291-308.
doi: 10.1111/j.1937-5956.2011.01261.x.
|
[41]
|
S. Raman, N. Patwa, I. Niranjan, U. Ranjan, K. Moorthy and A. Mehta, Impact of big data on supply chain management, Int. J. Logist. Res. Appl., 21 (2018), 579-596.
doi: 10.1080/13675567.2018.1459523.
|
[42]
|
A. I. Sivakumar and C. S. Chong, A simulation based analysis of cycle time distribution, and throughput in semiconductor backend manufacturing, Comput. Ind., 45 (2001), 59-78.
doi: 10.1016/S0166-3615(01)00081-1.
|
[43]
|
J. Smoczek and J. Szpytko, Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system, Eng. Appl. Artif. Intell., 28 (2014), 190-200.
doi: 10.1016/j.engappai.2013.07.013.
|
[44]
|
C. Wang, C. Li, H. Huang, J. Qiu, J. Qu and L. Yin, ASNN-FRR: A traffic-aware neural network for fastest route recommendation, to appear, Geoinformatica, (2021).
doi: 10.1007/s10707-021-00458-7.
|
[45]
|
Q. Wang, X. Yang, Z. Huang and Y. Yuan, Multi-vehicle trajectory design during cooperative adaptive cruise control platoon formation, Transp. Res. Rec., 2674 (2020), 30-41.
doi: 10.1177/0361198120913290.
|
[46]
|
K. J. Wei, V. Vaze and A. Jacquillat, Airline timetable development and fleet assignment incorporating passenger choice, Transp. Sci., 54 (2020), 139-163.
doi: 10.1287/trsc.2019.0924.
|
[47]
|
C. Wen, P. Huang, Z. Li, J. Lessan, L. Fu, C. Jiang and X. Xu, Train dispatching management with data- driven approaches: A comprehensive review and appraisal, IEEE Access, 7 (2019), 114547-114571.
doi: 10.1109/ACCESS.2019.2935106.
|
[48]
|
S. Winkelhaus and E. H. Grosse, Logistics 4.0: A systematic review towards a new logistics system, Int. J. Prod. Res., 58 (2020), 18-43.
doi: 10.1080/00207543.2019.1612964.
|
[49]
|
T. Wu, F. Xiao, C. Zhang, D. Zhang and Z. Liang, Regression and extrapolation guided optimization for production-distribution with ship-buy-exchange options, Transport. Res. E Log., 129 (2019), 15-37.
doi: 10.1016/j.tre.2019.06.012.
|
[50]
|
J. Zhang, S. Onal and S. Das, Price differentiated channel switching in a fixed period fast fashion supply chain, Int. J. Prod. Econ., 193 (2017), 31-39.
doi: 10.1016/j.ijpe.2017.06.030.
|
[51]
|
Y. Zhang, Z. Zhang, A. Lim and M. Sim, Robust Data-driven vehicle routing with time windows, Oper. Res., 69 (2021), 469-485.
doi: 10.1287/opre.2020.2043.
|
[52]
|
Q. Zhao, C. Zhou and G. Pedrielli, Decision support system for data-driven driver-experience augmented vehicle routing problem, Asia Pac. J. Oper. Res., 37 (2020), 2050018.
doi: 10.1142/S0217595920500189.
|
[53]
|
S. Zhong, Y. Geng, W. Liu and W. Chen, A bibliometric review on natural resource accounting during 1995-2014, J. Clean. Prod., 139 (2016), 122-132.
doi: 10.1016/j.jclepro.2016.08.039.
|
[54]
|
C. Zhou, A. Stephen, X. Cao and S. Wang, A data-driven business intelligence system for large-scale semi-automated logistics facilities, Int. J. Prod. Res., 59 (2021), 2250-2268.
doi: 10.1080/00207543.2020.1727048.
|
[55]
|
E. Zunic, D. Donko and E. Buza, An adaptive data-driven approach to solve real-world vehicle routing problems in logistics, Complex., 2020 (2020), 7386701.
doi: 10.1155/2020/7386701.
|