\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pricing strategy in an interval-valued production inventory model for high-tech products under demand disruption and price revision

  • *Corresponding author: Mijanur Rahaman Seikh

    *Corresponding author: Mijanur Rahaman Seikh 
Abstract / Introduction Full Text(HTML) Figure(7) / Table(2) Related Papers Cited by
  • Due to continuous development in technology, new and updated products are launching in the market more frequently in the area of some high-tech products such as smartphones, laptops, etc. It is noticed that after a certain period of releasing a new product by a particular company some other company develops a similar type of product at a lesser selling price. Customers generally become attracted to buy that updated product causing a sudden disruption in the demand for the first product. The demand for a normal product may also suddenly vanish as we have experienced during the COVID-19 lockdown period. The manufacturer is then compelled to reduce the selling price to sell the remaining products. This paper aims at developing a single period production inventory model addressing this particular market condition. This paper also considers carbon emissions from different inventory processes and examines the optimal inventory policies under the cap and trade regulatory policy. Again, in a real-life production system, the various inventory cost components and the carbon emission rates from different inventory processes are not fixed always. To incorporate this issue, the proposed model considers these quantities as interval numbers. The resulting optimization problem is thus also interval-valued and has been solved by using the quantum-behaved particle swarm optimization technique. A numerical illustration is provided to validate the proposed model. Finally, a sensitivity analysis with respect to key inventory parameters is performed to derive some key managerial implications. It is found that the frequency of launching new products is inversely proportional to the optimum profit of the manufacturer. Also, a higher carbon tax rate is found to be beneficial from an environmental point of view.

    Mathematics Subject Classification: Primary: 90B05, 90B30; Secondary: 49N30, 90C59.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Research scheme of our paper

    Figure 2.  Behaviour of the inventory level with respect to time

    Figure 3.  Concavity of the profit function w.r.t. $ t_1 $ and $ m $

    Figure 4.  Impact on the optimal profit and optimal carbon emission due to changes in $ \alpha $

    Figure 5.  Impact on the optimal profit and optimal cycle length due to changes in $ \beta $

    Figure 6.  Impact on the optimal profit and optimal cycle length due to changes in $ t_3 $

    Figure 7.  Impact on the optimal profit and optimal carbon emission due to changes in $ \bar{c_1} $

    Table 1.  Summary of literature survey

    References Demand depends on Demand disruption Pricing strategy Imprecise cost parameter Carbon emission Imprecise emission rate Cap and trade policy
    Rana et al. [37] time $ \checkmark $
    Ali et al. [1] price & service level $ \checkmark $ $ \checkmark $
    Wu et al. [61] price $ \checkmark $ $ \checkmark $
    Cao [5] price $ \checkmark $ $ \checkmark $
    Bhunia et. al [4] price, time & advertisement $ \checkmark $
    San-Jos$ \acute{e} $ et al. [45] price, time & advertisement $ \checkmark $
    Sepehri and Gholamian [46] price $ \checkmark $ $ \checkmark $ $ \checkmark $
    Qu et al. [35] price & warranty period $ \checkmark $ $ \checkmark $ $ \checkmark $
    Ruidas et al. [39] price $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $
    Gupta et al. [19] price, advertisement & stock level $ \checkmark $
    Ruidas et al. [43] price, time & advertisement $ \checkmark $ $ \checkmark $
    Proposed model price, time & advertisement $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $ $ \checkmark $
     | Show Table
    DownLoad: CSV

    Table 2.  Sensitivity analysis

    Para meter Changes $ t_1^* $ $ m^* $ $ p^* $ Optimal profit $ T^* $ Lot size Carbon emission
    $ \alpha $ 355 0.17270 1.45493 104.03 [114.67, 287.68] 2.39599 120.89 [1477.52, 1643.34]
    360 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    365 0.16861 1.45521 104.05 [285.23, 500.86] 1.72357 118.03 [1946.66, 2152.35]
    $ \beta $ 2.9 0.17100 1.46419 104.69 [410.73, 643.00] 1.62241 119.70 [2109.67, 2331.19]
    3.0 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    3.1 0.17291 1.44652 103.42 [34.62, 199.66] 2.60076 121.04 [1381.65, 1540.06]
    $ t_3 $ 1.4 0.17171 1.46581 104.81 [178.32, 356.10] 2.27236 120.20 [1537.92, 1708.13]
    1.5 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    1.6 0.17219 1.44637 103.40 [213.47, 414.15] 1.93925 120.53 [1777.45, 1969.25]
    $ X $ 680 0.17707 1.45472 104.01 [196.64, 385.00] 2.09719 120.41 [1652.65, 1832.80]
    700 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    720 0.16697 1.45542 104.06 [194.48, 382.66] 2.10102 120.22 [1649.15, 1829.14]
    $ C $ 35 0.16796 1.45036 103.70 [190.90, 379.31] 2.02636 117.57 [1670.54, 1850.51]
    40 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    45 0.17633 1.46035 104.43 [200.25, 389.50] 2.17013 123.43 [1639.34, 1820.61]
    $ A $ 7 0.17060 1.45949 104.35 [182.14, 363.09] 2.19535 119.42 [1578.43, 1752.02]
    8 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    9 0.17309 1.45125 103.95 [207.52, 403.22] 2.01279 121.16 [1722.83, 1909.47]
    $ \lambda $ 0.45 0.16777 1.43493 102.60 [262.57, 461.62] 1.78169 117.44 [1880.62, 2080.04]
    0.50 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    0.55 0.17371 1.47242 105.28 [134.10, 318.82] 2.34277 121.60 [1512.42, 1681.33]
    $ l $ 0.93 0.16039 1.44121 103.05 [173.02, 379.07] 1.72905 112.27 [1869.26, 2065.62]
    0.95 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    0.97 0.18164 1.46798 104.96 [224.87, 403.38] 2.42734 127.15 [1516.83, 1688.15]
    $ \bar{c_0} $ [1090,1110] 0.17109 1.45410 103.97 [199.84, 389.07] 2.07352 119.76 [1663.27, 1844.20]
    [1100,1120] 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    [1110,1130] 0.17270 1.45596 104.10 [191.22, 378.63] 2.12447 120.89 [1639.34, 1818.63]
    $ \bar{c_1} $ [68.5, 69.5] 0.16815 1.46492 101.81 [305.21, 527.76] 1.65435 117.70 [2018.39, 2230.60]
    [70.5, 71.5] 0.17187 1.45506 104.04 [195.52, 383.80] 2.09882 120.31 [1651.05, 1831.13]
    [72.5, 73.5] 0.17219 1.44174 105.97 [97.90, 268.87] 2.43368 120.53 [1455.07, 1618.96]
     | Show Table
    DownLoad: CSV
  • [1] S. M. AliM. H. RahmanaT. J. TumpaA. A. M. Rifata and S. K. Paul, Examining price and service competition among retailers in a supply chain under potential demand disruption, Journal of Retailing and Consumer Services, 40 (2018), 40-47. 
    [2] M. Alinaghian and A. Goli, Location, allocation and routing of temporary health centers in rural areas in crisis, solved by improved harmony search algorithm, International Journal of Computational Intelligence Systems, 10 (2017), 894-913. 
    [3] A. K. Bhunia and A. A. Shaikh, Investigation of two-warehouse inventory problems in interval environment under inflation via particle swarm optimization, Mathematical and Computer Modelling of Dynamical Systems, 22 (2016), 160-179.  doi: 10.1080/13873954.2016.1150860.
    [4] A. K. BhuniaA. A. ShaikhG. Sharma and S. Pareek, A two storage inventory model for deteriorating items with variable demand and partial backlogging, Journal of Industrial and Production Engineering, 32 (2015), 263-272. 
    [5] E. Cao, Coordination of dual-channel supply chains under demand disruptions management decisions, International Journal of Production Research, 52 (2014), 7114-7131. 
    [6] K. CaoX. XuQ. Wu and Q. Zhang, Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies, Journal of Cleaner Production, 167 (2017), 505-513. 
    [7] S. ChakraborttyM. Pal and P. K. Nayak, Solution of interval-valued manufacturing inventory models with shortages, International Journal of Engineering and Physical Sciences, 4 (2010), 96-101. 
    [8] X. ChenS. Benjaafar and A. Elomri, The carbon-constrained EOQ, Operations Research Letters, 41 (2013), 172-179.  doi: 10.1016/j.orl.2012.12.003.
    [9] Z. Chen and B. R. Sarker, Integrated production-inventory and pricing decisions for a single-manufacturer multi-retailer system of deteriorating items under JIT delivery policy, International Journal of Advanced Manufacturing Technology, 89 (2017), 2099-2117. 
    [10] M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space, IEEE Transactions on Evolutionary Computations, 6 (2002), 58-73. 
    [11] R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, (1995), 39-43.
    [12] L. FengY. L. Chan and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date, International Journal of Production Economics, 185 (2017), 11-20. 
    [13] S. K. GhoshM. R. Seikh and M. Chakrabortty, Analyzing a stochastic dual-channel supply chain under consumers' low carbon preferences and cap-and-trade regulation, Computers & Industrial Engineering, 149 (2020), 106765. 
    [14] A. Goli and T. Keshavarz, Just-in-time scheduling in identical parallel machine sequence-dependent group scheduling problem, J. Ind. Manag. Optim., 18 (2022), 3807-3830.  doi: 10.3934/jimo.2021124.
    [15] A. GoliH. Khademi-ZareR. Tavakkoli-MoghaddamA. SadeghiehM. Sasanian and R. M. Kordestanizadeh, An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: A case study, Network: Computation in Neural Systems, 32 (2020), 1-35. 
    [16] A. Goli and B. Malmir, A covering tour approach for disaster relief locating and routing with fuzzy demand, International Journal of Intelligent Transportation Systems Research, 18 (2020), 140-152. 
    [17] A. Goli and H. Mohammadi, Developing a sustainable operational management system using hybrid Shapley value and Multimoora method: Case study petrochemical supply chain, Environment, Development and Sustainability, 24 (2022), 10540-10569. 
    [18] A. GoliH. K. ZareR. Tavakkoli-Moghaddam and A. Sadeghieh, Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem case study: The dairy products industry, Computers & Industrial Engineering, 137 (2019), 106090. 
    [19] R. K. GuptaA. K. Bhunia and S. K. Goyal, An application of genetic algorithm in a marketing oriented inventory model with interval valued inventory costs and three-component demand rate dependent on displayed stock-level, Applied Mathematics and Computation, 192 (2007), 466-478.  doi: 10.1016/j.amc.2007.03.022.
    [20] M. R. HasanT. C. RoyY. Daryanto and H. M. Wee, Optimizing inventory level and technology investment under a carbon tax, cap-and-trade and strict carbon limit regulations, Sustainable Production and Consumption, 25 (2021), 604-621. 
    [21] Y. He and S. Wang, Analysis of production-inventory system for deteriorating items with demand disruption, International Journal of Production Research, 50 (2012), 4580-4592. 
    [22] B. Hintermann, Allowance price drivers in the first phase of the EUETS, Journal of Environmental Economics and Management, 59 (2010), 43-56. 
    [23] Y. S. HuangC. C. Fang and Y. A. Lin, Inventory management in supply chains with consideration of logistics, green investment and different carbon emissions policies, Computers & Industrial Engineering, 139 (2020), 106207. 
    [24] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95- International Conference On Neural Network, Perth, WA, Australia, 4 (1995), 1942-1948.  doi: 10.1109/ICNN.1995.488968.
    [25] A. Khakbaz and E. B. Tirkolaee, A sustainable hybrid manufacturing/remanufacturing system with two-way substitution and WEEE directive under different market conditions, Optimization, 71 (2022), 3083-3106.  doi: 10.1080/02331934.2021.1935937.
    [26] M. A. KhanA. A. ShaikhI. KonstantarasA. K. Bhunia and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price, International Journal of Production Economics, 230 (2020), 107804. 
    [27] B. KhorshidvandH. SoleimaniS. Sibdari and M. S. Esfahani, A hybrid modeling approach for green and sustainable closed-loop supply chain considering price, advertisement and uncertain demands, Computers & Industrial Engineering, 157 (2021), 107326. 
    [28] M. Khouja and S. S. Robbins, Linking advertising and quantity decisions in the single-period inventory model, International Journal of Production Economics, 86 (2003), 93-105. 
    [29] P. Kotler, Marketing Decision Making: A Model Building Approach, Holt, Rinehart and Winston, New York, 1971.
    [30] J. Liu, Q. Yang, Y. Zhang, W. Sun and Y. Xu, Analysis of $CO_2$ emissions in China's manufacturing industry based on extended logarithmic mean division index decomposition, Sustainibility, 11 (2019).
    [31] U. Mishra, J. Tijerina-Aguilera, S. Tiwari and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Retailer's joint ordering, pricing and preservation technology investment policies for a deteriorating item under permissible delay in payments, Mathematical Problems in Engineering, 2018 (2018), 6962417, 14 pp. doi: 10.1155/2018/6962417.
    [32] R. E. Moore, Method and Application of Interval Analysis, SIAM Studies in Applied Mathematics, 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1979.
    [33] M. Palanivel and R. Uthayakumar, A production-inventory model with variable production cost and probabilistic deterioration, Asia Pacific Journal of Mathematics, 1 (2014), 197-212. 
    [34] K. Patra, An production inventory model with imperfect production and risk, Int. J. Appl. Comput. Math., 4 (2018), Paper No. 91, 16 pp. doi: 10.1007/s40819-018-0524-8.
    [35] S. QuH. Yang and Y. Ji, Low-carbon supply chain optimization considering warranty period and carbon emission reduction level under cap-and-trade regulation, Environment, Development and Sustainability, 23 (2021), 18040-18067. 
    [36] M. S. RahmanA. K. MannaA. A. Shaikh and A. K. Bhunia, An application of interval differential equation on a production inventory model with interval-valued demand via center-radius optimization technique and particle swarm optimization, International Journal of Intelligent System, 35 (2020), 1280-1326. 
    [37] R. S. Rana, D. Kumar, R. S. Mor and K. Prasad, Modelling the impact of demand disruptions on two warehouse perishable inventory policy amid COVID-19 lockdown, International Journal of Logistics Research and Applications, (2021).
    [38] S. RuidasM. R. Seikh and P. K. Nayak, An EPQ model with stock and selling price dependent demand and variable production rate in interval environment, International Journal of System Assurance Engineering and Management, 11 (2020), 385-399. 
    [39] S. RuidasM. R. Seikh and P. K. Nayak, A production inventory model with interval-valued carbon emission parameters under price-sensitive demand, Computers & Industrial Engineering, 154 (2021), 107154. 
    [40] S. RuidasM. R. Seikh and P. K. Nayak, A production-repairing inventory model considering demand and the proportion of defective items as rough intervals, Operational Research - An International Journal, 22 (2021), 2803-2829. 
    [41] S. RuidasM. R. Seikh and P. K. Nayak, A production inventory model for high-tech products involving two production runs and a product variation, Journal of Industrial and Management Optimization, 19 (2023), 2178-2205. 
    [42] S. Ruidas, M. R. Seikh and P. K. Nayak, A production inventory model for green products with emission reduction technology investment and green subsidy, Process Integration and Optimization for Sustainability, (2022).
    [43] S. Ruidas, M. R. Seikh, P. K. Nayak and B. Sarkar, A single period production inventory model in interval environment with price revision, Int. J. Appl. Comput. Math., 5 (2019), Paper No. 7, 20 pp. doi: 10.1007/s40819-018-0591-x.
    [44] L. SahooA. K. Bhunia and P. K. Kapur, Genetic algorithm based multi-objective reliability optimization in interval environment, Computers & Industrial Engineering, 62 (2012), 152-160. 
    [45] L. A. San-Jos$\acute{e}$, J. Sicilia and B. Abdul-Jalbar, Optimal policy for an inventory system with demand dependent on price, time and frequency of advertisement, Comput. Oper. Res., 128 (2021), 105169, 13 pp. doi: 10.1016/j.cor.2020.105169.
    [46] A. Sepehri and M. R. Gholamian, Joint pricing and lot-sizing for a production model under controllable deterioration and carbon emissions, International Journal of Systems Science: Operations & Logistics, 9 (2022), 324-338. 
    [47] A. A. ShaikhL. E. C$\acute{a}$rdenas-Barr$\acute{o}$n and S. Tiwari, A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions, Neural Computing and Applications, 31 (2019), 1931-1948. 
    [48] H. Sun and J. Yang, Optimal decisions for competitive manufacturers under carbon tax and cap-and-trade policies, Comput. Oper. Res., 156 (2021), 107244. 
    [49] J. SunB. Feng and W. B. Xu, Particle swarm optimization with particles having quantum behavior, IEEE Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 1 (2004), 325-331. 
    [50] J. SunX. WuV. PaladeW. FangC. Lai and W. Xu, Convergence analysis and improvements of quantum behaved particle swarm optimization, Information Sciences, 193 (2012), 81-103.  doi: 10.1016/j.ins.2012.01.005.
    [51] A. A. TaleizadehV. R. Soleymanfar and K. Govindan, Sustainable economic production quantity models for inventory systems with shortage, Journal of Cleaner Production, 174 (2018), 1011-1020. 
    [52] E. B. Tirkolaee, Z. Dashtian, G.-W. Weber, H. Tomaskova, M. Soltani and N. S. Mousavi, An integrated decision-making approach for green supplier selection in an agri-food supply chain: Threshold of robustness Worthiness, Mathematics, 9 (2021).
    [53] E. B. TirkolaeeA. MardaniZ. DashtianM. Soltani and G.-W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, Journal of Cleaner Production, 250 (2020), 119517. 
    [54] S. TiwariL. E. C$\acute{a}$rdenas-Barr$\acute{o}$nM. Goh and A. A. Shaikh, Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain, International Journal of Production Economics, 200 (2018), 16-36. 
    [55] E. B. TirkolaeeP. Abbasian and G.-W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak, Science of the Total Environment, 756 (2021), 143607. 
    [56] E. B. TirkolaeeA. GoliP. Ghasemi and F. Goodarzian, Designing a sustainable closed-loop supply chain network of face masks during the COVID-19 pandemic: Pareto-based algorithms, Journal of Cleaner Production, 333 (2022), 130056. 
    [57] S. TiwariC. K. JaggiM. Gupta and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Optimal pricing and lot-sizing policy for supply chain system with deteriorating items under limited storage capacity, International Journal of Production Economics, 200 (2018), 278-290. 
    [58] R. UdayakumarK. V. Geetha and S. S. Sana, Economic ordering policy for non-instantaneous deteriorating items with price and advertisement dependent demand and permissible delay in payment under inflation, Math. Methods Appl. Sci., 44 (2021), 7697-7721.  doi: 10.1002/mma.6594.
    [59] United States Environmental Protection Agency, Sources of Greenhouse Gas Emissions, 2020, Available from: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
    [60] H. J. Weiss and E. C. Rosenthal, Optimal ordering policies when anticipating a disruption in supply or demand, European Journal of Operational Research, 59 (1992), 370-382. 
    [61] J. WuZ. Chen and X. Ji, Sustainable trade promotion decisions under demand disruption in manufacturer-retailer supply chains, Annals of Operations Research, 290 (2020), 115-143.  doi: 10.1007/s10479-018-2964-2.
    [62] X. Xu, Y. Chen, P. He, Y. Yu and G. Bi, The selection of marketplace mode and reselling mode with demand disruptions under cap-and-trade regulation, International Journal of Production Research, (2021).
    [63] S. Yadav and A. Khanna, Sustainable inventory model for perishable products with expiration date and price reliant demand under carbon tax policy, Process Integration and Optimization for Sustainability, 5 (2021), 475-486. 
  • 加载中

Figures(7)

Tables(2)

SHARE

Article Metrics

HTML views(2609) PDF downloads(176) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return