\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two-stage stochastic nonlinear winner determination for logistics service procurement auctions under quantity discounts

  • *Corresponding author: Mingqiang Yin

    *Corresponding author: Mingqiang Yin 

This work has been sponsored by NSFC Grant #71801157; Foundation of Shenzhen Science and Technology Program Grant #20220810100345001, #JCYJ202103240932080; National Social Science Foundation of China Grant #21AGL014; Guangdong NSF Grant #2021A1515011894; and Guangdong 13th-Five-Year-Plan Philosophical and Social Science Fund Grant #GD20CGL28.

Abstract / Introduction Full Text(HTML) Figure(3) / Table(6) Related Papers Cited by
  • Quantity discount is a frequently adopted scheme that has not been explicitly investigated in logistics service procurement auctions. This paper focuses on a revised winner determination problem under quantity discounts and demand uncertainty for a fourth-party logistics (4PL) provider in a combinatorial reverse auction. To characterize our research problem, a two-stage stochastic nonlinear programming model is constructed. Inspired by the idea of sample average approximation (SAA), the nonlinear model is reformulated as a deterministic mixed integer linear programming model by using a linearization technique with superior expressions. Since the reformulation has a large number of decision variables and constraints, we integrate SAA with a dual decomposition Lagrangian relaxation technique (DDLR) to develop a solution method called SAA-DDLR. Numerical experiments are conducted to illustrate the effectiveness and applicability of our model and method. Sensitivity analysis reveals that both the 4PL and 3PLs can benefit from the quantity discount scheme. Managerial insights are drawn for the 4PL to run a cost-effective logistics system in the presence of quantity discounts.

    Mathematics Subject Classification: Primary: 90B06, 90C15; Secondary: 68W25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The CRA process of a 4PL via a logistics platform

    Figure 2.  The impact of $ CV $ on 3PLs' revenues

    Figure 3.  The impact of $ N_{\min} $ and $ N_{\max} $ on 3PLs' revenues

    Table 1.  The summary of notations

    Sets
    $ I $ set of lanes
    $ J $ set of 3PLs
    $ K_j $ set of packages submitted by 3PL $ j $
    $ S $ set of uncertain scenarios
    Parameters
    $ \xi_{i} $ uncertain demand of shipment volume on lane $ i $
    $ N_{\min} $ minimum number of winning 3PLs specified by 4PL
    $ N_{\max} $ maximum number of winning 3PLs specified by 4PL, $ N_{\max} \geq N_{\min} $
    $ LS_{jk} $ minimum shipment volume of 3PL $ j $ on package $ k $
    $ US_{jk} $ maximum shipment volume of 3PL $ j $ on package $ k $
    $ e_i $ unit outside cost for shipping freights on lane $ i $ by other 3PLs
    $ b_{jk} $ bid price of shipping 1 unit of demand quoted by 3PL $ j $ on package $ k $
    $ a_{ijk} $ 1 if lane $ i $ is included in 3PL $ j $'s package $ k $, and 0 otherwise
    $ d_{iw} $ demand of shipment volume on lane $ i $ under scenario $ w \in S $
    $ v_{j} $ transaction cost related to 3PL $ j $
    Decision variables
    $ y_{jk} $ shipment volume assigned to 3PL $ j $ on package $ k $
    $ p_{jk} $ 1 if 3PL $ j $'s package $ k $ wins the auction, and 0 otherwise
    $ \varphi_{i} $ shipment volume on lane $ i $ assigned to other 3PLs out of CRA
     | Show Table
    DownLoad: CSV

    Table 2.  Performance of SAA-DDLR for different problems

    $e_i$ Small-scale problems Medium-scale problems Large-scale problems
    CPLEX SAA-DDLR CPLEX SAA-DDLR CPLEX SAA-DDLR
    Upper bound Low bound Gap Time (s)
    TC Time (s) TC Time (s) TC Time (s) TC Time (s) TC Time (s) TC (avg.) std. TC (avg.) std. avg. std. Max(%)
    100 171700 109 171700 59 635935 29278 635935 2901 NA NA 40944354 4829 40880426 801 63928 4895 0.18 3616
    150 197182 1468 197182 822 681755 33512 681755 3456 NA NA 41813999 6453 41731699 1040 82300 6536 0.22 6268
    200 201707 1482 201707 897 704696 74022 704696 4929 NA NA 42375911 7646 42266304 1113 109607 7727 0.29 7081
    300 202660 1247 202660 941 720490 75249 720703 8289 NA NA 43227780 10485 42994511 1537 233269 10597 0.58 6613
    500 203542 1444 203542 959 725943 93081 727184 8895 NA NA 44284222 13944 43951873 3030 332349 14270 0.80 5847
     | Show Table
    DownLoad: CSV

    Table 3.  Results of SAA-DDLR under different discounts and $ CV $s

    CV $ e_i $ Large$ ^* $ Small$ ^* $ No$ ^* $
    TC OC TC OC TC OC
    0.10 100 570146 77869 718563 94353 851095 150080
    150 592303 57796 752952 64913 890678 100780
    200 610902 29658 774338 84544 913478 60420
    300 625731 44487 800306 51034 936512 30984
    500 630370 0 807990 652 943188 6784
    0.29 100 635935 154880 777393 206830 899721 231050
    150 681755 85072 858079 148910 993020 262330
    200 704696 65641 891102 113430 1050868 148810
    300 720703 11289 927948 42813 1095192 58462
    500 727184 16319 941930 18815 1110862 21681
    0.48 100 711495 235370 847148 280600 967307 373700
    150 784838 104850 968396 276860 1107871 404140
    200 821074 87554 1026127 139800 1197159 223080
    300 831696 29084 1076190 29084 1265924 101890
    500 842965 26030 1090704 31941 1292423 22447
    *“Small” indicates that the discount percentage is small. “Large” indicates that the discount percentage is large. “No” indicates that the discount policy is absent.
     | Show Table
    DownLoad: CSV

    Table 4.  Comparison analysis with the EVP model

    $ CV $ $ e_i $ Large Small No
    TC-EVP GAP TC-EVP GAP TC-EVP GAP
    0.1 100 570146 0 718563 0 853257 2162
    150 592303 0 752952 0 892582 1904
    200 611854 952 774338 0 919980 6502
    300 628865 3134 800306 0 956195 19683
    500 646673 16302 816947 8957 988468 45280
    0.29 100 640176 4241 780353 2960 916108 16386
    150 690916 9162 858079 0 1014682 21662
    200 725487 20791 905826 14724 1092516 41649
    300 778852 58150 963726 35778 1220591 125400
    500 849565 122380 1033421 91491 1412704 301841
    0.48 100 719822 8327 854017 6869 990430 23124
    150 808026 23188 978127 9730 1146772 38902
    200 861934 40861 1061857 35729 1276379 79220
    300 967840 136145 1162982 86791 1502996 237072
    500 1138397 295432 1332713 242009 1886639 594216
     | Show Table
    DownLoad: CSV

    Table 5.  The impact of $ N_{\min} $ and $ N_{\max} $ on the total cost

    $ N_{\min}=0, N_{\max}=10 $ $ N_{\min}=20, N_{\max}=40 $
    100 150 200 300 500 100 150 200 300 500
    Large 570834 605166 628896 677022 763169 645659 656289 657062 657062 657062
    Small 718563 759572 793251 841977 931730 789182 810858 819950 821883 822363
    No 851095 897258 933603 994752 1082627 901511 931529 946081 952939 954209
     | Show Table
    DownLoad: CSV

    Table 6.  Results of total cost and the number of selected packages under different discount policies

    $ N_{\min} $ $ N_{\max} $ $ e_i $ Problem A Problem B Original problem
    TC $ [FS^1, FS^4) $ $ [FS^4, FS^5] $ TC $ [FS^1, FS^2) $ $ [FS^2, FS^3) $ $ [FS^3, FS^4) $ $ [FS^4, FS^5) $ TC $ [FS^1, FS^2) $ $ [FS^2, FS^3) $ $ [FS^3, FS^4) $ $ [FS^4, FS^5) $
    0 10 100 570834 0 10 570834 0 0 0 10 570834 0 0 0 10
    150 605167 0 10 605167 0 0 0 10 605166 0 0 0 10
    200 628896 0 10 628896 0 0 0 10 628896 0 0 0 10
    300 677022 0 10 677022 0 0 0 10 677022 0 0 0 10
    500 763169 0 10 763169 0 0 0 10 763169 0 0 0 10
    20 40 100 650638 9 11 642172 6 4 2 8 645659 6 4 0 10
    150 662443 6 14 653019 2 6 4 8 656289 6 4 1 9
    200 662869 6 14 653203 2 6 4 8 657062 2 8 1 9
    300 663026 6 14 655164 3 3 6 8 657062 2 8 1 9
    500 663187 6 14 655264 3 3 6 8 657062 2 8 1 9
    0 40 100 570146 0 11 570146 0 0 0 11 570146 0 0 0 11
    150 592303 0 11 591957 0 0 1 10 592303 0 0 0 11
    200 610902 0 14 608633 0 0 3 11 610902 0 0 0 14
    300 625731 0 14 623512 0 0 3 11 625731 0 0 0 14
    500 632659 2 14 628251 0 3 3 11 630370 0 3 0 14
     | Show Table
    DownLoad: CSV
  • [1] S. AğraliB. Tan and F. Karaesmen, Modeling and analysis of an auction-based logistics market, European J. Oper. Res., 191 (2008), 272-294.  doi: 10.1016/j.ejor.2007.08.018.
    [2] J. Asker and E. Cantillon, Procurement when price and quality matter, Rand. J. Econ, 41 (2010), 1-34. 
    [3] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, New York-Chichester-Brisbane, 1979.
    [4] C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Oper. Res. Lett., 24 (1999), 37-45.  doi: 10.1016/S0167-6377(98)00050-9.
    [5] A. Engin and R. Vetschera, Optimistic overconfidence in electronic reverse auctions, Electronic Commerce Research and Applications, 35 (2019), 100842. 
    [6] S. D. HandokoH. C. Lau and S. Cheng, Achieving economic and environmental sustainabilities in urban consolidation center with bicriteria auction, IEEE Transactions on Automation Science and Engineering, 13 (2016), 1471-1479. 
    [7] Q. HuZ. Zhang and A. Lim, Transportation service procurement problem with transit time, Transportation Research Part B: Methodological, 86 (2016), 19-36. 
    [8] M. HuangX. QianS.-C. Fang and X. Wang, Winner determination for risk aversion buyers in multi-attribute reverse auction, Omega, 59 (2016), 184-200. 
    [9] M. HuangJ. TuX. Chao and D. Jin, Quality risk in logistics outsourcing: A fourth party logistics perspective, European J. Oper. Res., 276 (2019), 855-879.  doi: 10.1016/j.ejor.2019.01.049.
    [10] P. KaraenkeM. Bichler and S. Minner, Coordination is hard: Electronic auction mechanisms for increased efficiency in transportation logistics, Management Science, 65 (2019), 5884-5900. 
    [11] A. J. KleywegtA. Shapiro and T. Homemdemello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim., 12 (2001), 479-502.  doi: 10.1137/S1052623499363220.
    [12] J. O. LedyardM. OlsonD. PorterJ. A. Swanson and D. P. Torma, The first use of a combined-value auction for transportation services, Interfaces, 32 (2002), 4-12. 
    [13] R. LiangJ. WangM. Huang and Z. Jiang, Truthful auctions for e-market logistics services procurement with quantity discounts, Transportation Research Part B: Methodological, 133 (2020), 165-180. 
    [14] Z. MaR. H. Kwon and C. Lee, A stochastic programming winner determination model for truckload procurement under shipment uncertainty, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 49-60. 
    [15] Q. MengT. Wang and S. Wang, Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand, European J. Oper. Res., 223 (2012), 96-105.  doi: 10.1016/j.ejor.2012.06.025.
    [16] V. I. NorkinY. Ermoliev and A. Ruszczyński, On optimal allocation of indivisibles under uncertainty, Operations Research, 46 (1998), 381-395. 
    [17] X. QianF. T. ChanM. YinQ. ZhangM. Huang and X. Fu, A two-stage stochastic winner determination model integrating a hybrid mitigation strategy for transportation service procurement auctions, Computers & Industrial Engineering, 149 (2020), 106703. 
    [18] X. QianS.-C. FangM. YinM. Huang and X. Li, Selecting green third party logistics providers for a loss-averse fourth party logistics provider in a multiattribute reverse auction, Inform. Sci., 548 (2021), 357-377.  doi: 10.1016/j.ins.2020.09.011.
    [19] X. QianM. HuangW.-K. ChingL. H. Lee and X. Wang, Mechanism design in project procurement auctions with cost uncertainty and failure risk, J. Ind. Manag. Optim., 15 (2019), 131-157.  doi: 10.3934/jimo.2018036.
    [20] X. QianM. YinF. T. ChanJ. Zhang and M. Huang, Sustainable-responsive winner determination for transportation service procurement auctions under accidental disruptions, J. Cleaner Production, 320 (2021), 128833. 
    [21] M. Rekik and S. Mellouli, Reputation-based winner determination problem for combinatorial transportation procurement auctions, J. the Operational Research Society, 63 (2012), 1400-1409. 
    [22] N. RemliA. AmroussI. E. Hallaoui and M. Rekik, A robust optimization approach for the winner determination problem with uncertainty on shipment volumes and carriers' capacity, Transportation Research Part B: Methodological, 123 (2019), 127-148. 
    [23] N. Remli and M. Rekik, A robust winner determination problem for combinatorial transportation auctions under uncertain shipment volumes, Transportation Research Part C: Emerging Technologies, 35 (2013), 204-217. 
    [24] V. RobuH. NootH. La Poutre and W. Van Schijndel, A multi-agent platform for auction-based allocation of loads in transportation logistics, Expert Systems With Applications, 38 (2011), 3483-3491. 
    [25] P. SchutzA. Tomasgard and S. Ahmed, Supply chain design under uncertainty using sample average approximation and dual decomposition, European J. Operational Research, 199 (2009), 409-419. 
    [26] Y. Sheffi, Combinatorial auctions in the procurement of transportation services, Interfaces, 34 (2004), 245-252. 
    [27] C. TrikiS. Mirmohammadsadeghi and S. Piya, Heuristic methods for the periodic Shipper Lane Selection Problem in transportation auctions, Computers & Industrial Engineering, 106 (2017), 182-191. 
    [28] D. WangX. Liu and L. Liu, Bid evaluation behavior in online procurement auctions involving technical and business experts, Electronic Commerce Research and Applications, 12 (2013), 328-336. 
    [29] F. Yang and Y. Huang, Linearization technique with superior expressions for centralized planning problem with discount policy, Phys. A, 542 (2020), 122746.  doi: 10.1016/j.physa.2019.122746.
    [30] F. YangY. Huang and J. Li, Alternative solution algorithm for winner determination problem with quantity discount of transportation service procurement, Phys. A, 535 (2019), 122286.  doi: 10.1016/j.physa.2019.122286.
    [31] M. YinX. QianM. Huang and Q. Zhang, Winner determination for logistics service procurement auctions under disruption risks and quantity discounts, Engineering Applications of Artificial Intelligence, 105 (2021), 104424. 
    [32] B. ZhangH. DingH. LiW. Wang and T. Yao, A sampling-based stochastic winner determination model for truckload service procurement, Netw. Spat. Econ., 14 (2014), 159-181.  doi: 10.1007/s11067-013-9214-6.
    [33] B. ZhangT. YaoT. L. Friesz and Y. Sun, A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions, Transportation Research Part B: Methodological, 78 (2015), 16-31. 
  • 加载中

Figures(3)

Tables(6)

SHARE

Article Metrics

HTML views(2305) PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return