Article Contents
Article Contents

# Bond portfolio optimization with long-range dependent credits

• *Corresponding author: Hoi Ying Wong

We thank the handling editor and the anonymous referee for their careful reading and constructive comments. HY Wong acknowledges the financial support from the Research Grants Council of Hong Kong with project codes: RMG8601495 and GRF14308422

• Consider the optimal allocation between money market account and corporate bond fund. While the money market account is free of credit risk, corporate bonds are defaultable and exhibit long-range dependence (LRD) in credit risk. We propose a Volterra default intensity model to capture the LRD in credit risk. Using utility maximization, we derive the novel optimal investment strategy for a corporate bond fund. As empirical study shows that the COVID-19 pandemic has lowered the level of LRD in credit risk, we conduct sensitivity analysis and empirically investigate the changes in demand for corporate bonds before and during the pandemic period.

Mathematics Subject Classification: Primary: 49N90, 93C95; Secondary: 60H30.

 Citation:

• Figure 1.  $\pi_t^*$ under different $H$

Figure 2.  Deutsche Bank corporate bond (zero coupon, maturity: 04/22/26) before COVID-19

Figure 3.  Deutsche Bank corporate bond (zero coupon, maturity: 04/22/26) under COVID-19

Figure 4.  $\pi_t^*$ under different loss rate $\delta$ and $H$

Table 1.  Comparison of the demand between before COVID-19 and during COVID-19 for Deutsche Bank corporate bond by indicators. Difference denotes disparity of trading volume on rising and declining days, and ratio is the relative value

 Before COVID-19 During COVID-19 Difference -1747000 -2025000 Ratio 0.8347 0.7746

Table 2.  Calibrated parameters for the default intensity $\lambda_t$ with fixed interest rate

 $\delta=0.4$ $\delta=0.5$ Parameters Before COVID-19 During COVID-19 Before COVID-19 During COVID-19 $\hat{\kappa}$ 0.1565 0.0405 0.1714 0.2383 $\hat{\sigma}$ 0.5945 0.6179 0.5060 0.7089 $\hat{\theta}$ 0.2652 0.6673 0.3463 0.4717 $\hat{H}$ 0.5970 0.4888 0.5994 0.4070 $\delta=0.7$ $\delta=0.8$ Parameters Before COVID-19 During COVID-19 Before COVID-19 During COVID-19 $\hat{\kappa}$ 0.1627 0.1713 0.1334 0.0356 $\hat{\sigma}$ 0.3328 0.4098 0.3087 0.3253 $\hat{\theta}$ 0.2269 0.2677 0.4380 0.7664 $\hat{H}$ 0.6471 0.4803 0.6324 0.4766
•  [1] E. Abi Jaber, M. Larsson and S. Pulido, Affine Volterra processes, Ann. Appl. Probab., 29 (2019), 3155-3200.  doi: 10.1214/19-AAP1477. [2] T. G. Andersen, T. Bollerslev, F. X. Diebold and P. Labys, The distribution of realized exchange rate volatility, J. Amer. Statist. Assoc., 96 (2001), 42-55.  doi: 10.1198/016214501750332965. [3] A. Azimli, The impact of COVID-19 on the degree of dependence and structure of risk-return relationship: A quantile regression approach, Finance Research Letters, 36 (2020), 101648. [4] F. Biagini, H. Fink and C. Klüppelberg, A fractional credit model with long range dependent default rate, Stochastic Process. Appl., 123 (2013), 1319-1347.  doi: 10.1016/j.spa.2012.12.006. [5] T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer-Verlag, Berlin, 2002. [6] L. Bo, A. Capponi and P.-C. Chen, Credit portfolio selection with decaying contagion intensities, Math. Finance, 29 (2019), 137-173.  doi: 10.1111/mafi.12177. [7] H. Boubaker and N. Sghaier, Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach, Journal of Banking & Finance, 37 (2013), 361-377. [8] J. Y. Campbell and G. B. Taksler, Equity volatility and corporate bond yields, The Journal of Finance, 58 (2003), 2321-2350. [9] A. Capponi and J. E. Figueroa-López, Dynamic portfolio optimization with a defaultable security and regime-switching, Math. Finance, 24 (2014), 207-249.  doi: 10.1111/j.1467-9965.2012.00522.x. [10] K. Chen, C. S. Pun and H. Y. Wong, Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations, European J. Operational Research, 304 (2023), 84-98.  doi: 10.1016/j.ejor.2021.11.012. [11] M. Chiah and A. Zhong, Trading from home: The impact of COVID-19 on trading volume around the world, Finance Research Letters, 37 (2020), 101784. [12] F. Comte and E. Renault, Long memory in continuous-time stochastic volatility models, Math. Finance, 8 (1998), 291-323.  doi: 10.1111/1467-9965.00057. [13] J. Driessen, Is default event risk priced in corporate bonds?, The Review of Financial Studies, 18 (2005), 165-195. [14] D. Duffie and K. J. Singleton, Modeling term structures of defaultable bonds, The Review of Financial Studies, 12 (1999), 687-720. [15] J. Eckert, N. Gatzert and M. Martin, Valuation and risk assessment of participating life insurance in the presence of credit risk, Insurance Math. Econom., 71 (2016), 382-393.  doi: 10.1016/j.insmatheco.2016.10.006. [16] R. J. Elliott and T. K. Siu, A BSDE approach to a risk-based optimal investment of an insurer, Automatica, 47 (2011), 253-261.  doi: 10.1016/j.automatica.2010.10.032. [17] A. Ellul, C. Jotikasthira and C. T. Lundblad, Regulatory pressure and fire sales in the corporate bond market, J. Financial Economics, 101 (2011), 596-620. [18] J. Fleming and C. Kirby, Long memory in volatility and trading volume, Journal of Banking & Finance, 35 (2011), 1714-1726. [19] G. Gripenberg,  S. O. Londen and  O. Staffans,  Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9780511662805. [20] M. Gubareva, The impact of COVID-19 on liquidity of emerging market bonds, Finance Research Letters, (2020), 101826. [21] B. Han and H. Y. Wong, Merton s portfolio problem under Volterra Heston model, Finance Research Letters, (2020), 101580. [22] M. Henry and P. Zaffaroni, The long-range dependence paradigm for macroeconomics and finance, Theory and Applications of Long-Range Dependence, (2003), 417-438. [23] Y. Hu, P. Imkeller and M. Müller, Utility maximization in incomplete markets, Ann. Appl. Probab., 15 (2005), 1691-1712.  doi: 10.1214/105051605000000188. [24] H. E. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116 (1951), 770-799. [25] R. A. Jarrow, D. Lando and F. Yu, Default risk and diversification: Theory and empirical implications, Math. Finance, 15 (2005), 1-26.  doi: 10.1111/j.0960-1627.2005.00208.x. [26] M. Jeanblanc, M. Mania, M. Santacroce and M. Schweizer, Mean-variance hedging via stochastic control and BSDEs for general semimartingales, Ann. Appl. Probab., 22 (2012), 2388-2428.  doi: 10.1214/11-AAP835. [27] D. Lando,  Credit Risk Modeling: Theory and Applications, Princeton University Press, 2004. [28] B. Martin, S. T. Rachev and E. S. Schwartz, Stable non-Gaussian models for credit risk management, In Handbook of Heavy Tailed Distributions in Finance, Elsevier, (2003), 405-441. [29] H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Stochastic Modelling and Applied Probability, 61. Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89500-8. [30] L. Wang, M. Chiu and H. Wong, Volterra mortality model: Actuarial valuation and risk management with long-range dependence, Insurance Math. Econom., 96 (2021), 1-14.  doi: 10.1016/j.insmatheco.2020.10.002. [31] J. Yin, B. Han and H. Y. Wong, COVID-19 and credit risk: A long memory perspective, Insurance Math. Econom., 104 (2022), 15-34.  doi: 10.1016/j.insmatheco.2022.01.008. [32] H. Zhu, C. Deng, S. Yue and Y. Deng, Optimal reinsurance and investment problem for an insurer with counterparty risk, Insurance Math. Econom., 61 (2015), 242-254.  doi: 10.1016/j.insmatheco.2015.01.013.
Open Access Under a Creative Commons license

Figures(4)

Tables(2)