|
[1]
|
A. D. Aleksandrov, On the surfaces representable as difference of convex functions, Sib. Èlektron. Mat. Izv., 9 (2012), 360-376.
|
|
[2]
|
F. J. A. Artacho and P. T. Vuong, The boosted dc algorithm for nonsmooth functions, SIAM J. Optim., 30 (2020), 980-1006.
doi: 10.1137/18M123339X.
|
|
[3]
|
H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), 5-16.
doi: 10.1007/s10107-007-0133-5.
|
|
[4]
|
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods, Math. Program., 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.
|
|
[5]
|
A. Beck, First-Order Methods in Optimization, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974997.ch1.
|
|
[6]
|
A. Beck and T. Marc, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.
doi: 10.1137/080716542.
|
|
[7]
|
A. Beck and Y. Vaisbourd, Globally solving the trust region subproblem using simple first-order methods, SIAM J. Optim., 28 (2018), 1951-1967.
doi: 10.1137/16M1150281.
|
|
[8]
|
D. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.
|
|
[9]
|
J. Bolte, A. Daniilidis and A. Lewis, The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 17 (2006), 1205-1223.
doi: 10.1137/050644641.
|
|
[10]
|
S. Bonettini, F. Porta and V. Ruggiero, A variable metric forward-backward method with extrapolation, SIAM J. Optim., 38 (2016), 2588-2584.
doi: 10.1137/15M1025098.
|
|
[11]
|
S. Bonettini, F. Porta, V. Ruggiero and L. Zanni, Variable metric techniques for forward-backward methods in imaging, J. Comput. Appl. Math., 385 (2021), Paper No. 113192, 30 pp.
doi: 10.1016/j.cam.2020.113192.
|
|
[12]
|
E. J. Candès, M. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $\ell_1$ minimization, J. Fourier Anal. Appl., 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x.
|
|
[13]
|
C. C. Chang and C. J. Lin, Libsvm: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, 2 (2011), 1-27.
doi: 10.1145/1961189.1961199.
|
|
[14]
|
J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online learing and stochastic optimization, J. Mach. Learn. Res., 12 (2011), 2121-2159.
|
|
[15]
|
G. França, D. P. Robinson and R. Vidal, Gradient flows and proximal splitting methods: A unified view on accelerated and stochastic optimization, Phys. Rev. E, 103 (2021), Paper No. 053304, 19 pp.
doi: 10.1103/physreve.103.053304.
|
|
[16]
|
P. Gong, C. Zhang, Z. Lu, J. Huang and J. Ye, A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, PMLR, 28 (2013), 37-45.
|
|
[17]
|
J. Y. Gotoh, A. Takeda and K. Tono, DC formulations and algorithms for sparse optimization problems, Math. Program., 169 (2018), 141-176.
doi: 10.1007/s10107-017-1181-0.
|
|
[18]
|
Z. T. Harmany, R. F. Marcia and R. M. Willett, This is SPIRAL-TAP: Sparse Poisson intensity reconstruction algorithms–theory and practice, IEEE Trans. Image Process., 21 (2012), 1084-1096.
doi: 10.1109/TIP.2011.2168410.
|
|
[19]
|
J. B. Hiriart-Urruty, Generalized differentiability/duality and optimization for problems dealing with differences of convex functions, Convexity and Duality in Optimization, 256 (1985), 37-70.
doi: 10.1007/978-3-642-45610-7_3.
|
|
[20]
|
R. Horst and N. V. Thoai, DC programming: Overview, J. Optim. Theory Appl., 103 (1999), 1-43.
doi: 10.1023/A:1021765131316.
|
|
[21]
|
H. Lantéri, M. Roche, O. Cuevas and C. Aime, A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints, Signal Process., 81 (2001), 945-974.
|
|
[22]
|
H. A. Le Thi, M. T. Belghiti and D. T. Pham, A new efficient algorithm based on DC programming and DCA for clustering, J. Global Optim., 37 (2007), 593-608.
doi: 10.1007/s10898-006-9066-4.
|
|
[23]
|
H. A. Le Thi, M. Moeini, D. T. Pham and J. Júdice, A DC programming approach for solving the symmetric eigenvalue complementarity problem, Comput. Optim. Appl., 51 (2012), 1097-1117.
doi: 10.1007/s10589-010-9388-5.
|
|
[24]
|
H. A. Le Thi and D. T. Pham, A continuous approach for large-scale constrained quadratic zero-one programming, Optimization, 45 (2001), 1-28.
|
|
[25]
|
H. A. Le Thi and D. T. Pham, Large-scale molecular optimization from distance matrices by a dc optimization approach, SIAM J. Optim., 14 (2003), 77-114.
doi: 10.1137/S1052623498342794.
|
|
[26]
|
H. A. Le Thi and D. T. Pham, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133 (2005), 23-46.
doi: 10.1007/s10479-004-5022-1.
|
|
[27]
|
H. A. Le Thi and D. T. Pham, DC programming and DCA: Thirty years of developments, Math. Program., Special Issue Dedicated to: DC Programming - Theory, Algorithm and Applications, 169 (2018), 5-68.
doi: 10.1007/s10107-018-1235-y.
|
|
[28]
|
H. A. Le Thi, D. T. Pham, H. M. Le and X. T. Vo, DC approximation approaches for sparse optimization, Eur. J. Oper. Res., 244 (2015), 26-46.
doi: 10.1016/j.ejor.2014.11.031.
|
|
[29]
|
Y. E. Nesterov, A method for solving the convex programming problem with convergence rate $\mathcal{O} (1/{k^2})$, Dokl. Akad. Nauk SSSR, 269 (1983), 543-547.
|
|
[30]
|
Y. E. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5.
|
|
[31]
|
Y. S. Niu, Programmation DC et DCA en Optimisation Combinatoire et Optimisation Polynomiale via les Techniques de SDP, Ph.D thesis, INSA de Rouen, France, 2010.
|
|
[32]
|
Y. S. Niu and R. Glowinski, Discrete dynamical system approaches for boolean polynomial optimization, J. Sci. Comput., 92 (2022), Paper No. 46, 39 pp.
doi: 10.1007/s10915-022-01882-z.
|
|
[33]
|
Y. S. Niu, J. Júdice, H. A. Le Thi and D. T. Pham, Solving the quadratic eigenvalue complementarity problem by DC programming, Proceedings of the Modelling, Computation and Optimization in Information Systems and Management Sciences, (2015), 203-214.
|
|
[34]
|
Y. S. Niu, J. Júdice, H. A. Le Thi and D. T. Pham, Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem, Appl. Math. Comput., 353 (2019), 95-113.
doi: 10.1016/j.amc.2019.02.017.
|
|
[35]
|
Y. S. Niu and D. T. Pham, A DC programming approach for mixed-integer linear programs, Proceedings of the Modelling, Computation and Optimization in Information Systems and Management Sciences, (2008), 244-253.
|
|
[36]
|
Y. S. Niu and D. T. Pham, DC programming approaches for BMI and QMI feasibility problems, Proceedings of the Advanced Computational Methods for Knowledge Engineering, (2014), 37-63.
|
|
[37]
|
Y. S. Niu, D. T. Pham, H. A. Le Thi and J. Júdice, Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem, Optim. Methods Softw., 28 (2013), 812-829.
doi: 10.1080/10556788.2011.645543.
|
|
[38]
|
Y. S. Niu, Y. J. Wang, H. A. Le Thi and D. T. Pham, High-order moment portfolio optimization via an accelerated difference-of-convex programming approach and sums-of-squares, preprint, 2019, arXiv: 1906.01509.
|
|
[39]
|
Y. S. Niu, Y. You and W. Z. Liu, Parallel dc cutting plane algorithms for mixed binary linear program, Proceedings of the World Congress on Global Optimization, France, (2019), 330-340.
|
|
[40]
|
Y. S. Niu, Y. You, W. Xu, W. Ding, J. Hu and S. Yao, A difference-of-convex programming approach with parallel branch-and-bound for sentence compression via a hybrid extractive model, Optim. Lett., 15 (2021), 2407-2432.
|
|
[41]
|
B. O'Donoghue and E. Candès, Adaptive restart for accelerated gradient schemes, Found. Comput. Math., 15 (2015), 715-732.
doi: 10.1007/s10208-013-9150-3.
|
|
[42]
|
W. de Oliveira, The abc of dc programming, Set-Valued Var. Anal., 28 (2020), 679-706.
doi: 10.1007/s11228-020-00566-w.
|
|
[43]
|
W. de Oliveira and M. P. Tcheou, An inertial algorithm for dc programming, Set-Valued Var. Anal., 27 (2019), 895-919.
doi: 10.1007/s11228-018-0497-0.
|
|
[44]
|
D. T. Pham and H. A. Le Thi, Convex analysis approach to d.c. programming: Theory, algorithms and applications, Acta Math. Vietnam., 22 (1997), 289-355.
|
|
[45]
|
D. T. Pham and H. A. Le Thi, A d.c. optimization algorithm for solving the trust-region subproblem, SIAM J. Optim., 8 (1998), 476-505.
doi: 10.1137/S1052623494274313.
|
|
[46]
|
D. T. Pham and H. A. Le Thi, Recent advances in DC Programming and DCA, Proceedings of the Transactions on Computational Intelligence XIII, (2014), 1-37.
|
|
[47]
|
D. T. Pham, H. A. Le Thi, V. N. Pham and Y. S. Niu, DC programming approaches for discrete portfolio optimization under concave transaction costs, Optim. Lett., 10 (2016), 261-282.
doi: 10.1007/s11590-015-0931-2.
|
|
[48]
|
D. T. Pham and Y. S. Niu, An efficient DC programming approach for portfolio decision with higher moments, Comput. Optim. Appl., 50 (2011), 525-554.
doi: 10.1007/s10589-010-9383-x.
|
|
[49]
|
D. T. Pham and E. B. Souad, Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients, North-Holland Math. Stud., 129 (1986), 249-271.
doi: 10.1016/S0304-0208(08)72402-2.
|
|
[50]
|
D. N. Phan, H. M. Le and H. A. Le Thi, Accelerated difference of convex functions algorithm and its application to sparse binary logistic regression, IJCAI, (2018), 1369-1375.
|
|
[51]
|
M. Raginsky, R. M. Willett, Z. T. Harmany and R. F. Marcia, Compressed sensing performance bounds under Poisson noise, IEEE Trans. Signal Process., 58 (2010), 3990-4002.
doi: 10.1109/TSP.2010.2049997.
|
|
[52]
|
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J. 1970.
|
|
[53]
|
K. Scheinberg, D. Goldfarb and X. Bai, Fast first-Order methods for composite convex optimization with backtracking, Found. Comput. Math., 14 (2014), 389-417.
doi: 10.1007/s10208-014-9189-9.
|
|
[54]
|
B. Wen, X. Chen and T. K. Pong, A proximal difference-of-convex algorithm with extrapolation, Comput. Optim. Appl., 69 (2018), 297-324.
doi: 10.1007/s10589-017-9954-1.
|
|
[55]
|
P. Yin, Y. Lou, Q. He and J. Xin, Minimization of $\ell_{1-2}$ for compressed sensing, SIAM J. Sci. Comput., 37 (2015), 536-563.
doi: 10.1137/140952363.
|
|
[56]
|
Y. You and Y. S. Niu, A refined inertial DC algorithm for DC programming, Optim. Eng., 2022.
|