[1]
|
P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008.
doi: 10.1515/9781400830244.
|
[2]
|
M. Arjovsky, A. Shah and Y. Bengio, Unitary evolution recurrent neural networks, in International Conference on Machine Learning, PMLR, 2016, 1120-1128.
|
[3]
|
T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang and S. Lu, Distributed learning in the nonconvex world: From batch data to streaming and beyond, IEEE Signal Processing Magazine, 37 (2020), 26-38.
doi: 10.1109/MSP.2020.2970170.
|
[4]
|
T.-H. Chang, M. Hong and X. Wang, Multi-agent distributed optimization via inexact consensus ADMM, IEEE Transactions on Signal Processing, 63 (2015), 482-497.
doi: 10.1109/TSP.2014.2367458.
|
[5]
|
S. Chen, A. Garcia, M. Hong and S. Shahrampour, Decentralized Riemannian gradient descent on the Stiefel manifold, in Proceedings of the 38th International Conference on Machine Learning, vol. 139, PMLR, 2021, 1594-1605.
|
[6]
|
T. Ding, Z. Zhu, T. Ding, Y. Yang, D. P. Robinson, M. C. Tsakiris and R. Vidal, Noisy dual principal component pursuit, in Proceedings of the 36th International Conference on Machine Learning, 2019
|
[7]
|
B. Gao, X. Liu and Y.-X. Yuan, Parallelizable algorithms for optimization problems with orthogonality constraints, SIAM Journal on Scientific Computing, 41 (2019), A1949-A1983.
doi: 10.1137/18M1221679.
|
[8]
|
A. Geiger, P. Lenz, C. Stiller and R. Urtasun, Vision meets robotics: The KITTI dataset, The International Journal of Robotics Research, 32 (2013), 1231-1237.
doi: 10.1177/0278364913491297.
|
[9]
|
D. Hajinezhad and M. Hong, Perturbed proximal primal–dual algorithm for nonconvex nonsmooth optimization, Mathematical Programming, 176 (2019), 207-245.
doi: 10.1007/s10107-019-01365-4.
|
[10]
|
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2003.
|
[11]
|
M. Hong, D. Hajinezhad and M.-M. Zhao, Prox-PDA: The proximal primal-dual algorithm for fast distributed nonconvex optimization and learning over networks, in International Conference on Machine Learning, PMLR, 2017, 1529-1538.
|
[12]
|
J. Hu, X. Liu, Z.-W. Wen and Y.-X. Yuan, A brief introduction to manifold optimization, Journal of the Operations Research Society of China, 8 (2020), 199-248.
doi: 10.1007/s40305-020-00295-9.
|
[13]
|
X. Hu and X. Liu, An efficient orthonormalization-free approach for sparse dictionary learning and dual principal component pursuit, Sensors, 20 (2020), 3041.
doi: 10.3390/s20113041.
|
[14]
|
L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang and B. Li, Orthogonal weight normalization: Solution to optimization over multiple dependent Stiefel manifolds in deep neural networks, in Thirty-Second AAAI Conference on Artificial Intelligence, vol. 32, 2018.
doi: 10.1609/aaai.v32i1.11768.
|
[15]
|
L.-K. Huang and S. Pan, Communication-efficient distributed PCA by Riemannian optimization, in International Conference on Machine Learning, PMLR, 2020, 4465-4474.
|
[16]
|
B. Jiang, S. Ma, A. M.-C. So and S. Zhang, Vector transport-free SVRG with general retraction for Riemannian optimization: Complexity analysis and practical implementation, arXiv: 1705.09059.
|
[17]
|
D. Kempe and F. McSherry, A decentralized algorithm for spectral analysis, Journal of Computer and System Sciences, 74 (2008), 70-83.
doi: 10.1016/j.jcss.2007.04.014.
|
[18]
|
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.
doi: 10.1109/5.726791.
|
[19]
|
X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang and J. Liu, Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent, Advances in Neural Information Processing Systems, 30.
|
[20]
|
Q. Ling, W. Shi, G. Wu and A. Ribeiro, DLM: Decentralized linearized alternating direction method of multipliers, IEEE Transactions on Signal Processing, 63 (2015), 4051-4064.
doi: 10.1109/TSP.2015.2436358.
|
[21]
|
H. Liu, A. M.-C. So and W. Wu, Quadratic optimization with orthogonality constraint: Explicit Łojasiewicz exponent and linear convergence of retraction-based line-search and stochastic variance-reduced gradient methods, Mathematical Programming, 178 (2019), 215-262.
doi: 10.1007/s10107-018-1285-1.
|
[22]
|
A. Nedić, A. Olshevsky and M. G. Rabbat, Network topology and communication-computation tradeoffs in decentralized optimization, Proceedings of the IEEE, 106 (2018), 953-976.
doi: 10.1109/JPROC.2018.2817461.
|
[23]
|
A. Nedić and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization, IEEE Transactions on Automatic Control, 54 (2009), 48-61.
doi: 10.1109/TAC.2008.2009515.
|
[24]
|
F. Penna and S. Stańczak, Decentralized eigenvalue algorithms for distributed signal detection in wireless networks, IEEE Transactions on Signal Processing, 63 (2014), 427-440.
doi: 10.1109/TSP.2014.2373334.
|
[25]
|
S. U. Pillai, T. Suel and S. Cha, The Perron-Frobenius theorem: Some of its applications, IEEE Signal Processing Magazine, 22 (2005), 62-75.
doi: 10.1109/MSP.2005.1406483.
|
[26]
|
C. Qi, K. A. Gallivan and P.-A. Absil, Riemannian BFGS algorithm with applications, in Recent Advances in Optimization and its Applications in Engineering, Springer, 2010,183-192.
doi: 10.1007/978-3-642-12598-0_16.
|
[27]
|
G. Qu and N. Li, Harnessing smoothness to accelerate distributed optimization, IEEE Transactions on Control of Network Systems, 5 (2017), 1245-1260.
doi: 10.1109/TCNS.2017.2698261.
|
[28]
|
H. Raja and W. U. Bajwa, Cloud K-SVD: A collaborative dictionary learning algorithm for big, distributed data, IEEE Transactions on Signal Processing, 64 (2015), 173-188.
doi: 10.1109/TSP.2015.2472372.
|
[29]
|
H. Sato, H. Kasai and B. Mishra, Riemannian stochastic variance reduced gradient algorithm with retraction and vector transport, SIAM Journal on Optimization, 29 (2019), 1444-1472.
doi: 10.1137/17M1116787.
|
[30]
|
W. Shi, Q. Ling, G. Wu and W. Yin, EXTRA: An exact first-order algorithm for decentralized consensus optimization, SIAM Journal on Optimization, 25 (2015), 944-966.
doi: 10.1137/14096668X.
|
[31]
|
E. Stiefel, Richtungsfelder und fernparallelismus in n-dimensionalen mannigfaltigkeiten, Commentarii Mathematici Helvetici, 8 (1935), 305-353.
doi: 10.1007/BF01199559.
|
[32]
|
H. Sun, S. Lu and M. Hong, Improving the sample and communication complexity for decentralized non-convex optimization: Joint gradient estimation and tracking, in Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020, 9217-9228.
|
[33]
|
E. Vorontsov, C. Trabelsi, S. Kadoury and C. Pal, On orthogonality and learning recurrent networks with long term dependencies, in International Conference on Machine Learning, PMLR, 2017, 3570-3578.
|
[34]
|
L. Wang, B. Gao and X. Liu, Multipliers correction methods for optimization problems over the Stiefel manifold, CSIAM Transactions on Applied Mathematics, 2 (2021), 508-531.
doi: 10.4208/csiam-am.SO-2020-0008.
|
[35]
|
L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems & Control Letters, 53 (2004), 65-78.
doi: 10.1016/j.sysconle.2004.02.022.
|
[36]
|
N. Xiao, X. Liu and Y.-X. Yuan, A class of smooth exact penalty function methods for optimization problems with orthogonality constraints, Optimization Methods and Software, 37 (2022), 1205-1241.
doi: 10.1080/10556788.2020.1852236.
|
[37]
|
R. Xin, U. A. Khan and S. Kar, Fast decentralized nonconvex finite-sum optimization with recursive variance reduction, SIAM Journal on Optimization, 32 (2022), 1-28.
doi: 10.1137/20M1361158.
|
[38]
|
R. Xin, S. Pu, A. Nedić and U. A. Khan, A general framework for decentralized optimization with first-order methods, Proceedings of the IEEE, 108 (2020), 1869-1889.
doi: 10.1109/JPROC.2020.3024266.
|
[39]
|
J. Xu, S. Zhu, Y. C. Soh and L. Xie, Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant stepsizes, in 54th IEEE Conference on Decision and Control, IEEE, 2015, 2055-2060.
doi: 10.1109/CDC.2015.7402509.
|
[40]
|
K. Yuan, Q. Ling and W. Yin, On the convergence of decentralized gradient descent, SIAM Journal on Optimization, 26 (2016), 1835-1854.
doi: 10.1137/130943170.
|
[41]
|
J. Zeng and W. Yin, On nonconvex decentralized gradient descent, IEEE Transactions on Signal Processing, 66 (2018), 2834-2848.
doi: 10.1109/TSP.2018.2818081.
|
[42]
|
H. Zhang, S. J Reddi and S. Sra, Riemannian SVRG: Fast stochastic optimization on Riemannian manifolds, Advances in Neural Information Processing Systems, 29.
|
[43]
|
Z. Zhu, Y. Wang, D. Robinson, D. Naiman, R. Vidal and M. Tsakiris, Dual principal component pursuit: Improved analysis and efficient algorithms, Advances in Neural Information Processing Systems, 31.
|