\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal contracts to a principal-agent model with a diffusion coefficient affected by firm size

  • *Corresponding author: Bing Liu

    *Corresponding author: Bing Liu

This work is supported by Doctoral Research Foundation of Southwest University of Science and Technology [22sx7108, 22sx7109].

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study a principal-agent model with its diffusion coefficient affected by firm size. Under the assumptions of linear production technology and exponential preferences, we obtain the explicit solutions of optimal contract of full information in a continuous-time environment. Applying martingale method, we characterize the incentive compatibility condition which is used to deal with the agent's problem. In the case of full information, the amount of optimal effort is a constant and the agent's consumption and principal's dividend are related to firm size. Through dynamic programming principle, the implementable contract in hidden actions is constructed by solving the principal's problem. When the firm size goes to zero, the effort of agent in hidden action case approaches the first-best effort level. In the hidden action case, the impact of firm size on dynamic incentives is shown and the moral hazard results in a reduction on effort.

    Mathematics Subject Classification: Primary: 91B41, 91B43, 90C39; Secondary: 90C47, 90C15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. AbreuD. Pearce and E. Stacchetti, Optimal cartel equilibria with imperfect monitoring, Journal of Economic Theory, 39 (1986), 251-269.  doi: 10.1016/0022-0531(86)90028-1.
    [2] D. AbreuD. Pearce and E. Stacchetti, Toward a theory of discounted repeated games with imperfect monitoring, Econometrica, 58 (1990), 1041-1063.  doi: 10.2307/2938299.
    [3] G. P. Baker and B. J. Hall, CEO incentives and firm size, Journal of Labor Economics, 22 (2004), 767-798. 
    [4] B. BiaisT. MariottiJ. C. Rochet and S. Villeneuve, Large risks, limited liability, and dynamic moral hazard, Econometrica, 78 (2010), 73-118.  doi: 10.3982/ECTA7261.
    [5] C. K. Chi and K. J. Choi, The impact of firm size on dynamic incentives and investment, The RAND Journal of Economics, 48 (2017), 147-177. 
    [6] H. L. Cole and N. R. Kocherlakota, Efficient allocations with hidden income and hidden storage, The Review of Economic Studies, 68 (2001), 523-542.  doi: 10.1111/1467-937X.00179.
    [7] T. F. Cooley and V. Quadrini, Financial markets and firm dynamics, American Economic Review, 91 (2001), 1286-1310. 
    [8] J. Cvitanić and J. Zhang, Contract Theory in Continuous-Time Models, 1$^{nd}$ edition, Springer-Verlag, New York, 2013. doi: 10.1007/978-3-642-14200-0.
    [9] P. M. DeMarzoM. J. FishmanZ. He and N. Wang, Dynamic agency and the q theory of investment, The Journal of Finance, 67 (2012), 2295-2340. 
    [10] P. M. DeMarzo and Y. Sannikov, Optimal security design and dynamic capital structure in a continuous-time agency model, The Journal of Finance, 61 (2006), 2681-2724. 
    [11] Z. Dou and S. Lai, Optimal contracts and asset prices in a continuous-time delegated portfolio management problem, Journal of Industrial and Management Optimization.
    [12] Z. He, Optimal executive compensation when firm size follows geometric brownian motion, The Review of Financial Studies, 22 (2009), 859-892. 
    [13] Z. He, A model of dynamic compensation and capital structure, Journal of Financial Economics, 100 (2011), 351-366. 
    [14] B. Holmstrom and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives, Econometrica, 55 (1987), 303-328.  doi: 10.2307/1913238.
    [15] J. A. Mirrlees, The theory of moral hazard and unobservable behaviour: Part Ⅰ, The Review of Economic Studies, 66 (1999), 3-21. 
    [16] Y. Sannikov, A continuous-time version of the principal-agent problem, The Review of Economic Studies, 75 (2008), 957-984.  doi: 10.1111/j.1467-937X.2008.00486.x.
    [17] S. Schaefer, The dependence of pay-performance sensitivity on the size of the firm, Review of Economics and Statistics, 80 (1998), 436-443. 
    [18] S. E. Spear and S. Srivastava, On repeated moral hazard with discounting, The Review of Economic Studies, 54 (1987), 599-617.  doi: 10.2307/2297484.
    [19] J. WeiZ. Jin and H. Yang, Optimal dividend policy with liability constraint under a hidden Markov regime-switching model, Journal of Industrial and Management Optimization, 15 (2019), 1965-1993.  doi: 10.3934/jimo.2018132.
    [20] N. Williams, On Dynamic Principal-Agent Problems in Continuous Time, University of Wisconsin, Madison, 2009.
    [21] N. Williams, Persistent private information, Econometrica, 79 (2011), 1233-1275.  doi: 10.3982/ECTA7706.
    [22] N. Williams, A solvable continuous time dynamic principal-agent model, Journal of Economic Theory, 159 (2015), 989-1015.  doi: 10.1016/j.jet.2015.07.006.
    [23] T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, Journal of Mathematics of Kyoto University, 11 (1971), 155-167.  doi: 10.1215/kjm/1250523691.
  • 加载中
SHARE

Article Metrics

HTML views(3249) PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return