\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A full-Newton step infeasible interior point algorithm and its parameters analysis

  • *Corresponding author: Lipu Zhang

    *Corresponding author: Lipu Zhang 

This work is supported by the National Natural Science Foundation of China under the grant No. 11501513, 11871435, the Natural Science Foundation of Zhejiang Province under the grant No. LY18A010030.

Abstract / Introduction Full Text(HTML) Figure(0) / Table(6) Related Papers Cited by
  • This article utilizes a simple univariate function to formulate the search direction for the full-Newton step and constructs a metric to estimate the distance between the iterative point and the central path. By doing so, it designs an infeasible interior point algorithm for linear optimization problems that employs only one kind of search step. As demonstrated in the complexity analysis, this straightforward univariate function proves to be highly beneficial in analyzing the algorithm. Additionally, we discuss the update parameters and threshold parameters of the algorithm, present three methods for parameter updates, and compare the efficiency of these three methods using numerical examples.

    Mathematics Subject Classification: Primary: 90C05; Secondary: 90C51.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The comparison of kernel functions, metrics, and factors before the complexity results

    The algorithm Kernel Function Metric Complexity Factor
    [16] with centality step $ \frac{t^2-1}{2}-\log{t} $ $ \frac{1}{2}\|v^{-1}-v\| $ $ 16\sqrt{2}n $
    [14] $ \begin{cases} \frac{t^2 - 1}{2} - \frac{t^{1-p}-1}{p-1}&\text{if } p \in [0,1)\\\frac{t^2 - 1}{2} - \log(t)&\text{if } p = 1\end{cases} $ $ \frac{1}{2}\|v^{-p}-v\| $ $ 18.5\sqrt{2}n $
    [7] $ \frac{t^2-1}{2}-(1-\theta)\log{t} $ $ \frac{1}{2}\|v^{-1}-v\| $ $ 20n $
    [21] with centrality step $ (1-t)^2 $ $ \|e-v\| $ $ 36n $
    [17] no centrality step $ \frac{t^2-1}{2}-\log{t} $ $ \frac{1}{2}\|v^{-1}-v\| $ $ 8n $
    [11] $ \frac{\left(t-1\right)^2}{2}+\frac{\left(t-1\right)^2}{2t}+\frac{1}{8}{tan}^2\left(h\left(t\right)\right), h\left(t\right)=\frac{\pi\left(1-t\right)}{4t+2} $ $ \frac{1}{2}\|v^{-1}-v\| $ $ 22n $
    [9] $ \frac{t^2-1}{2}-\int_{1}^{t}{\frac{sinh(1)}{2sinh(v)}dy} $ $ \|\frac{sinh(e)}{2sinh(v)}-\frac{v}{2}\| $ $ 25\sqrt{2}n $
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical results for Example 1 with small updates

    iter $ \theta $ $ \Psi_s(v) $ $ \mu $ gap
    1 2.2222e-002 0.0000e+000 9.7778e-001 3.0000e+000
    20 2.2222e-002 3.7527e-004 6.3797e-001 2.0014e+000
    40 2.2222e-002 3.7585e-004 4.0701e-001 1.2769e+000
    60 2.2222e-002 3.7688e-004 2.5966e-001 8.1465e-001
    80 2.2222e-002 3.7761e-004 1.6566e-001 5.1974e-001
    100 2.2222e-002 3.7805e-004 1.0569e-001 3.3158e-001
    120 2.2222e-002 3.7831e-004 6.7425e-002 2.1154e-001
    140 2.2222e-002 3.7847e-004 4.3015e-002 1.3496e-001
    160 2.2222e-002 3.7857e-004 2.7443e-002 8.6101e-002
    180 2.2222e-002 3.7863e-004 1.7508e-002 5.4931e-002
    200 2.2222e-002 3.7867e-004 1.1169e-002 3.5044e-002
    220 2.2222e-002 3.7870e-004 7.1258e-003 2.2357e-002
    240 2.2222e-002 3.7871e-004 4.5461e-003 1.4263e-002
    255 2.2222e-002 3.7872e-004 3.2452e-003 1.0182e-002
     | Show Table
    DownLoad: CSV

    Table 3.  Numerical results for Example 1 with adaptive updates

    iter $ \theta $ $ \Psi_s(v) $ $ \mu $ gap
    1 1.1031e-001 0.0000e+000 8.8969e-001 3.0000e+000
    10 8.9401e-002 6.3645e-003 3.8483e-001 1.3873e+000
    20 8.9242e-002 6.4622e-003 1.5100e-001 5.4464e-001
    30 8.9174e-002 6.5037e-003 5.9323e-002 2.1401e-001
    40 8.9150e-002 6.5186e-003 2.3316e-002 8.4120e-002
    50 8.9141e-002 6.5242e-003 9.1652e-003 3.3068e-002
    60 8.9138e-002 6.5264e-003 3.6030e-003 1.3000e-002
    62 8.9137e-002 6.5266e-003 2.9893e-003 1.0785e-002
     | Show Table
    DownLoad: CSV

    Table 4.  Numerical results for Example 1 with large updates

    iter $ \theta $ $ \Psi_s(v) $ $ \mu $ gap
    1 2.5000e-001 0.0000e+000 7.5000e-001 3.0000e+000
    5 2.5000e-001 5.6353e-002 2.3730e-001 1.2267e+000
    10 2.5000e-001 6.0065e-002 5.6314e-002 2.9351e-001
    15 2.5000e-001 6.0957e-002 1.3363e-002 6.9779e-002
    20 2.5000e-001 6.1162e-002 3.1712e-003 1.6566e-002
    21 2.5000e-001 6.1177e-002 2.3784e-003 1.2425e-002
     | Show Table
    DownLoad: CSV

    Table 5.  Numerical results for Example 2

    density $ m\times n $ iter$ _{ \rm{small}} $ iter$ _{ \rm{adaptiv}e} $ iter$ _{ \rm{large}} $
    0.2 $ 10\times 100 $ 19368 3260 57
    0.2 $ 20\times 200 $ 44089 6710 65
    0.2 $ 30\times 300 $ 65383 10939 66
    0.2 $ 40\times 600 $ 145394 23739 72
    0.2 $ 100\times 1000 $ 262429 42302 81
    0.7 $ 40\times 200 $ 46139 7970 70
    0.7 $ 60\times 400 $ 97467 16368 75
    0.7 $ 80\times 600 $ 156075 25291 79
    0.7 $ 100\times 800 $ 214607 34641 82
    0.7 $ 150\times 1000 $ 282358 45695 87
     | Show Table
    DownLoad: CSV

    Table 6.  Numerical results for Example 3

    Problems $ m\times n $ iter$ _{ \rm{small}} $ iter$ _{ \rm{adaptive}} $ iter$ _{ \rm{large}} $
    ADLITTLE $ 56\times 138 $ 53274 9008 91
    AFIRO $ 27\times 51 $ 16030 2824 74
    BLEND $ 74\times 114 $ 30295 5156 63
    E226 $ 223\times 472 $ 179609 29487 90
    SC50A $ 50\times 78 $ 22495 3885 68
    SCAGR7 $ 129\times 185 $ 76312 12797 97
    VTP-BASE $ 198\times 347 $ 140745 23241 95
     | Show Table
    DownLoad: CSV
  • [1] S. Asadi and H. Mansouri, Polynomial interior-point algorithm for P * (κ) horizontal linear complementarity problems, Numer. Algorithms, 63 (2013), 385-398.  doi: 10.1007/s11075-012-9628-0.
    [2] Y. BaiC. Roos and M. El Ghami, A primal-dual interior-point method for linear optimization based on a new proximity function, Optim. Methods Softw., 6 (2002), 985-1008.  doi: 10.1080/1055678021000090024.
    [3] Y. Bai, M. El Ghami and C. Roos, A New efficient large-update primal-dual interior-point method based on a finite barrier, SIAM J. Optim., 13 2002, 766-782. doi: 10.1137/S1052623401398132.
    [4] Y. BaiM. Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim., 15 (2004), 101-128.  doi: 10.1137/S1052623403423114.
    [5] X. ChiZ. Wan and Z. Hao, A full-modified-Newton step O(n) infeasible interior-point method for the special weighted linear complementarity problem, J. Ind. Manag. Optim., 4 (2022), 2579-2598.  doi: 10.3934/jimo.2021082.
    [6] M. Ferris, O. Mangasarian and S. Wright, Linear Programming with MATLAB, Society for Industrial and Applied Mathematics, 2007. doi: 10.1137/1.9780898718775.
    [7] G. Gu, H. Mansouri, M. Zangiabadi, et al., Improved full-Newton step O(nL) infeasible interior-point method for linear optimization, J. Optim. Theory Appl., 145 (2010), 271-288. doi: 10.1007/s10957-009-9634-0.
    [8] G. GuM. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior-point method for symmetric optimization, Eur. J. Oper. Res., 3 (2011), 473-484.  doi: 10.1016/j.ejor.2011.02.022.
    [9] S. GuerdouhW. Chikouche and B. Kheirfam, A full-Newton step infeasible interior-point algorithm based on a kernel function with a new barrier term, J. Appl. Math. Comput., 69 (2023), 2935-2953.  doi: 10.1007/s12190-023-01858-8.
    [10] L. Guerra, A class of new search directions for full-NT step feasible interior point method in semidefinite optimization, RAIRO-Oper. Res., 56 (2022), 3955-3971.  doi: 10.1051/ro/2022192.
    [11] B. Kheirfam and M. Haghighi, A full-Newton step infeasible interior-point method based on a trigonometric kernel function without centering steps, Numer. Algorithms, 85 (2020), 59-75.  doi: 10.1007/s11075-019-00802-x.
    [12] B. Kheirfam and N. Mahdavi-Amiri, An infeasible interior-point algorithm based on modified Nesterov and Todd directions for symmetric linear complementarity problem, Optimization, 64 (2015), 1577-1591.  doi: 10.1080/02331934.2013.869877.
    [13] Z. Liu and W. Sun, A full-NT-step infeasible interior-point algorithm for SDP based on kernel functions, Appl. Math. Comput., 217 (2011), 4990-4999.  doi: 10.1016/j.amc.2010.11.049.
    [14] Z. LiuW. Sun and F. Tian, A full-Newton step infeasible interior-point algorithm for linear programming based on a kernel function, Appl. Math. Opt., 60 (2009), 237-251.  doi: 10.1007/s00245-009-9069-x.
    [15] H. Mansouri, Full-Newton step infeasible interior-point algorithm for SDO problems, Kybernetika, 48 (2012), 907-923. 
    [16] C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim., 16 (2006), 1110-1136.  doi: 10.1137/050623917.
    [17] C. Roos, An improved and simplified full-newton step O(n) infeasible interior-point method for linear optimization, SIAM J. Optim., 25 (2015), 102-114.  doi: 10.1137/140975462.
    [18] C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, Springer, 2006.
    [19] G. WangY. Bai and C. Roos, Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function, J. Math. Model Algorithm, 4 (2005), 409-433.  doi: 10.1007/s10852-005-3561-3.
    [20] L. ZhangY. Bai and Y. Xu, A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function, Numer. Algorithms, 61 (2012), 57-81.  doi: 10.1007/s11075-011-9530-1.
    [21] L. Zhang and Y. Xu, A new infeasible interior-point algorithm with full step for linear optimization based on a simple function, Int. J. Comput. Math., 88 (2011), 3163-3185.  doi: 10.1080/00207160.2011.597503.
  • 加载中

Tables(6)

SHARE

Article Metrics

HTML views(2122) PDF downloads(201) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return