[1]
|
S. Asadi and H. Mansouri, Polynomial interior-point algorithm for P * (κ) horizontal linear complementarity problems, Numer. Algorithms, 63 (2013), 385-398.
doi: 10.1007/s11075-012-9628-0.
|
[2]
|
Y. Bai, C. Roos and M. El Ghami, A primal-dual interior-point method for linear optimization based on a new proximity function, Optim. Methods Softw., 6 (2002), 985-1008.
doi: 10.1080/1055678021000090024.
|
[3]
|
Y. Bai, M. El Ghami and C. Roos, A New efficient large-update primal-dual interior-point method based on a finite barrier, SIAM J. Optim., 13 2002, 766-782.
doi: 10.1137/S1052623401398132.
|
[4]
|
Y. Bai, M. Ghami and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim., 15 (2004), 101-128.
doi: 10.1137/S1052623403423114.
|
[5]
|
X. Chi, Z. Wan and Z. Hao, A full-modified-Newton step O(n) infeasible interior-point method for the special weighted linear complementarity problem, J. Ind. Manag. Optim., 4 (2022), 2579-2598.
doi: 10.3934/jimo.2021082.
|
[6]
|
M. Ferris, O. Mangasarian and S. Wright, Linear Programming with MATLAB, Society for Industrial and Applied Mathematics, 2007.
doi: 10.1137/1.9780898718775.
|
[7]
|
G. Gu, H. Mansouri, M. Zangiabadi, et al., Improved full-Newton step O(nL) infeasible interior-point method for linear optimization, J. Optim. Theory Appl., 145 (2010), 271-288.
doi: 10.1007/s10957-009-9634-0.
|
[8]
|
G. Gu, M. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior-point method for symmetric optimization, Eur. J. Oper. Res., 3 (2011), 473-484.
doi: 10.1016/j.ejor.2011.02.022.
|
[9]
|
S. Guerdouh, W. Chikouche and B. Kheirfam, A full-Newton step infeasible interior-point algorithm based on a kernel function with a new barrier term, J. Appl. Math. Comput., 69 (2023), 2935-2953.
doi: 10.1007/s12190-023-01858-8.
|
[10]
|
L. Guerra, A class of new search directions for full-NT step feasible interior point method in semidefinite optimization, RAIRO-Oper. Res., 56 (2022), 3955-3971.
doi: 10.1051/ro/2022192.
|
[11]
|
B. Kheirfam and M. Haghighi, A full-Newton step infeasible interior-point method based on a trigonometric kernel function without centering steps, Numer. Algorithms, 85 (2020), 59-75.
doi: 10.1007/s11075-019-00802-x.
|
[12]
|
B. Kheirfam and N. Mahdavi-Amiri, An infeasible interior-point algorithm based on modified Nesterov and Todd directions for symmetric linear complementarity problem, Optimization, 64 (2015), 1577-1591.
doi: 10.1080/02331934.2013.869877.
|
[13]
|
Z. Liu and W. Sun, A full-NT-step infeasible interior-point algorithm for SDP based on kernel functions, Appl. Math. Comput., 217 (2011), 4990-4999.
doi: 10.1016/j.amc.2010.11.049.
|
[14]
|
Z. Liu, W. Sun and F. Tian, A full-Newton step infeasible interior-point algorithm for linear programming based on a kernel function, Appl. Math. Opt., 60 (2009), 237-251.
doi: 10.1007/s00245-009-9069-x.
|
[15]
|
H. Mansouri, Full-Newton step infeasible interior-point algorithm for SDO problems, Kybernetika, 48 (2012), 907-923.
|
[16]
|
C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim., 16 (2006), 1110-1136.
doi: 10.1137/050623917.
|
[17]
|
C. Roos, An improved and simplified full-newton step O(n) infeasible interior-point method for linear optimization, SIAM J. Optim., 25 (2015), 102-114.
doi: 10.1137/140975462.
|
[18]
|
C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, Springer, 2006.
|
[19]
|
G. Wang, Y. Bai and C. Roos, Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function, J. Math. Model Algorithm, 4 (2005), 409-433.
doi: 10.1007/s10852-005-3561-3.
|
[20]
|
L. Zhang, Y. Bai and Y. Xu, A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function, Numer. Algorithms, 61 (2012), 57-81.
doi: 10.1007/s11075-011-9530-1.
|
[21]
|
L. Zhang and Y. Xu, A new infeasible interior-point algorithm with full step for linear optimization based on a simple function, Int. J. Comput. Math., 88 (2011), 3163-3185.
doi: 10.1080/00207160.2011.597503.
|