\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The newsvendor problem with normal, worst-case and binomial distribution of demand: Managerial implications with examples

  • *Corresponding author: Tomasz Brzęczek

    *Corresponding author: Tomasz Brzęczek 
Abstract / Introduction Full Text(HTML) Figure(8) / Table(7) Related Papers Cited by
  • The paper examines the newsvendor problem with demand distributions commonly used in the literature. Optimal order convergence is checked numerically. An important contribution is that the expected profits differ considerably in nominal and relative terms when the profit-loss ratio is low valued while the demand variability is at least moderate. Missed expected profit reaches even 10% of total order cost for a mark-up that equals to the worst case break even one. The optimal order quantities are compared to counterparts derived from sales data. The main managerial implication indicates that the normal distribution solution outperforms distribution-free solutions in predicting the maximal expected profit under empirical demand. Therefore, the MaxiMin solution is recommended to be used in practice to simplify the maximal expected profit calculus and for break-even mark-up evaluation. However, it should not be used to solve the optimal order quantity because the worst-case distribution asymmetry is determined by the profit-to-loss ratio and can be contradictory to the asymmetry of sales data. Moreover, the normal distribution optimum bounded with 0.8 service level commitment shows negative expected profit under mark-up from the range of 5-20% while demand variability is low or moderate proportionally to mark-up.

    Mathematics Subject Classification: Primary: 90-02, 90-08; Secondary: 90-11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The optimal order quantities $ Q^{N}, Q^{B}, Q^{S} $ for demand $ D(\mu = 10,\sigma = 2) $

    Figure 2.  The optimal order quantities $ Q^{N} $, $ Q^{B} $ and $ Q^{S} $ for $ D(\mu = 10,\sigma = 5) $

    Figure 3.  Maximum expected profit from various distributions of demand $ D(\mu = 10,\sigma = 2) $

    Figure 4.  Maximum expected profit from various distributions of demand $ D(\mu = 10,\sigma = 5) $

    Figure 5.  Histogram of 30 weekly sales $ D(\mu = 29.8, \sigma = 15.35) $ versus the normal distribution function

    Figure 6.  The optimal order quantities for various distributions of demand $ D(\mu = 29.8, \sigma = 15.35) $

    Figure 7.  The maximal expected profit for theoretical and empirical demand distributions with $ (\mu = 29.80; \sigma = 5.35) $

    Figure 8.  Expected profits for the optimal and non-optimal order quantities under the worst-case and the normal distributions of $D\sim N\left( \mu = 10,\sigma = \left\{ 2,\ \ 5 \right\} \right)$ for break-even mark-up values

    Table 1.  The standard deviation $ S $ of profit payoffs $ Z $ around the maximal expected profit $ E(Z) = \Pi $ for discount $ d = 1 $ for demand $ D(\mu = 10,\sigma = 5) $

    $ m $
    0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 1.6 1.75 2 2.4
    $ S(P) $ Normal 2.9 4.7 8.1 13.3 18.4 21.7 28.9 34.2 44.4 48.0 54.2 64.0
    Worst-case 3.5 4.2 6.1 9.4 13.0 17.4 22.6 28.5 41.9 47.2 56.5 72.1
    Binomial 1.1 2.2 3.9 6.8 7.8 11.9 13.3 14.6 21.6 22.9 25.0 28.3
     | Show Table
    DownLoad: CSV

    Table 2.  Break-even mark-up $\underline{m}$ values for analyzed demand settings

    Demand Worst-case Normal Binomial Empirical
    $ (\mu,\sigma) $ $d' = 0.5$ $d = 1$ $d' = 0.5$ $d = 1$ $d' = 0.5$ $d = 1$ $d = 1$
    (10, 2) 0.020 0.040 0 0.001 0 0.0001 NA
    (10, 5) 0.125 0.250 0.042 0.085 0 0 NA
    (29.80, 15.35) 0.135 0.270 0.030 0.060 0 0 0
    NA - not applicable
     | Show Table
    DownLoad: CSV

    Table 3.  Expected profit for the optimal order quantity from various distributions $ (\mu = 10,\sigma = 2),\ d = 1 $

    $ {\underline{m}}^{N} = 0.001 $ $ {\underline{m}}^{S} = 0.04 $ $ m = 0.6 $ $ m = 1.2 $
    $ Q^{N} $ $ Q^{B} $ $ Q^{S} $ $ Q^{N} $ $ Q^{B} $ $ Q^{B} $ $ Q^{N} $ $ Q^{S} $ $ Q^{B} $ $ Q^{S} $ $ Q^{N} $
    3.80 5.00 5.20 6.46 7.00 9.00 9.36 9.48 10 10.18 10.23
    $\Pi^{N}(Q)$ 0.123 0.10 1.02 1.15 1.11 23.48 23.56 23.40 50.50 50.55 50.56
    $\Pi^{S}(Q)$ -0.260 -0.260 0 0 0 22.25 22.25 22.25 49.04 49.04 49.04
    $\Pi^{B}(Q)$ 0.018 0.022 1.03 1.22 1.28 24.58 24.37 24.33 51.82 51.46 51.37
     | Show Table
    DownLoad: CSV

    Table 4.  Expected profit for the optimal order quantity from various distributions $ (\mu = 10,\sigma = 5),\ d = 1 $

    Optimal order quantity $ {\underline{m}}^{N} = 0.085 $ $ {\underline{m}}^{S} = 0.25 $ $ m = 0.6 $ $ m = 1.2 $
    $ Q^N $ $ Q^B $ $ Q^N $ $ Q^S $ $ Q^B $ $ Q^N $ $ Q^S $ $ Q^B $ $ Q^B $ $ Q^S $ $ Q^N $
    2.92 7.00 5.79 6.25 8.00 8.41 8.71 9.00 10 10.18 10.57
    $\Pi^{N}(Q)$ 0 -2.77 3.44 3.40 2.98 14.40 14.35 14.28 37.44 37.57 37.58
    $\Pi^{S}(Q)$ -2.35 -3.04 0 0 0 10.64 10.64 10.64 32.61 32.61 32.61
    $\Pi^{B}(Q)$ 1.24 2.51 7.09 7.46 8.64 22.67 22.96 23.25 50.30 50.10 50.04
     | Show Table
    DownLoad: CSV

    Table 5.  The optimal order and maximum expected profit for service level constraint (18) when discount $ d = 1 $ and demand volatility $ \sigma = 2 $

    $ m $
    0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 1.6 1.75 2 2.4
    $ Q^{'} $ Normal 10.6 10.8 11.0
    Worst-case 10.4 10.6 10.9 11.3 11.5 11.8 12 12.2 12.5 12.6 12.8 13.1
    Binomial 10.0 10 10 10 10 10 10
    $ \Pi^{'} $ Normal -3.3 1.0 3.7 13.2 22.6 32 41.4 50.9 69.7 76.8 88.6 107.8
    Worst-case 0.3 1.8 5.5 13.7 22.3 31.1 40 49.0 67.4 74.3 85.9 104.5
    Binomial -1.5 0.9 5.5 14.7 24 33.2 42.4 51.7 70.2 77.1 85.9 107.2
     | Show Table
    DownLoad: CSV

    Table 6.  The optimal order and maximum expected profit for service level constraint (18) when discount $ d = 0.5 $ and demand volatility $ \sigma = 5 $ constraint (18)

    $ m $
    0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 1.6 1.75 2 2.4
    $ Q^{'} $ Normal 12.9 13.4 13.6 13.9 14.5
    Worst-case 11.6 12.2 13.2 14.5 15.5 16.3 17.1 17.7 18.9 19.4 20 21
    $ \Pi^{'} $ Normal -7.4 -5.1 -0.6 8.5 17.5 26.6 35.6 44.7 62.8 69.8 81.4 100.1
    Worst-case -1.5 -0.6 2.1 8.8 16.3 24.2 32.3 40.6 57.6 64.1 75 92.6
     | Show Table
    DownLoad: CSV

    Table 7.  The optimal order and maximum expected profit for service level constraint (18) when discount $ d = 1 $ and demand volatility $ \sigma = 5 $

    $ m $
    0.05 0.1 0.2 0.4 0.6 0.8 1 1.2 1.6 1.75 2 2.4
    $ Q^{'} $ Normal 12.9
    Worst-case 11.1 11.6 12.2 13.2 13.9 14.5 15 15.5 16.3 16.6 17.1 17.7
    Binomial 11 12
    $ \Pi^{'} $ Normal -17 -14.8 -10.2 -1.2 7.9 16.9 26 35 53 59.9 71.2 89.3
    Worst-case -3.1 -2.9 -1.2 4.2 10.6 17.6 25 32.6 48.4 54.4 64.6 81.2
    Binomial -8.8 -6.4 -1.5 8.2 18 27.7 37.5 47.2 66.7 74 86.2 105.7
     | Show Table
    DownLoad: CSV
  • [1] M. M. Aldaihani and M. A. Darwish, Service level enhancement in newsvendor model, Computers & Industrial Engineering, 98 (2016), 164-170. 
    [2] H. K. Alfares and H. H. Elmorra, The distribution-free newsboy problem: Extensions to the shortage penalty case, International Joural of Production Economics, 93-94 (2005), 465-477. 
    [3] J. AnderssonK. JörnstenS. L. NonasL. Sandal and J. Ubøe, A maximum entropy approach to the newsvendor problem with partial information, European Journal of Operational Research, 228 (2013), 190-200.  doi: 10.1016/j.ejor.2013.01.031.
    [4] K. J. ArrowS. Karlin and  H. ScarfStudies in the Mathematical Theory of Inventory and Production, 1$^{st}$ edition, Stanford University Press, 1958. 
    [5] G.-Y. Ban and C. Rudin, The big data newsvendor: Practical insights from machine learning, Operations Research, 67 (2019), 90-108.  doi: 10.1287/opre.2018.1757.
    [6] Y. Bassok and R. Anupindi, Analysis of supply contracts with total minimum commitment, IIE Transactions, 29 (1997), 373-381. 
    [7] Y. Bassok and R. Anupindi, Analysis of supply contracts with commitments and flexibility, Naval Research Flexibility, 55 (2008), 459-477.  doi: 10.1002/nav.20300.
    [8] A. Ben-TalB. GolanyA. Nemirovski and J.-P. Vial, Retailer-supplier flexible commitments contracts: a robust optimization approach, Manufacturing & Service Operations Management, 7 (2005), 248-271. 
    [9] U. BenzionY. Cohen and T. Shavit, The newsvendor problem with unknown distribution, Journal of the Operational Research Society, 61 (2010), 1022-1031. 
    [10] T. Brzȩczek, Sales forecasting and newsboy model techniques integrated for merchandise planning and bussines risk optimization, Proceedings of the 34th Conference on Modelling and Simulation ECMS, (2020), 111-115.
    [11] R. A. Butters, On demand uncertainty in the newsvendor model, Economic Letters, 185 (2019), 108746, 4 pp. doi: 10.1016/j.econlet.2019.108746.
    [12] F. Y. Chan and D. Krass, Inventory models with minimal service level constraints, European Journal of Operational Research, 134 (2001), 120-140.  doi: 10.1016/S0377-2217(00)00243-5.
    [13] T. Chernonog and N. Goldberg, On the multi-product newsvendor with bounded demand distributions, International Journal of Production Economics, 203 (2018), 38-47. 
    [14] E. EeckhoudtC. Gollier and H. Schlsinger, The risk-averse (and prudent) newsboy, Management Science, 41 (1995), 7863-7794. 
    [15] G. Gallego and I. Moon, Th distribution free newsboy problem: Review and extensions, Journal of the Operational Research Society, 44 (1993), 825-834. 
    [16] M. D. Garvey and S. Carnovale, The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation, International Journal of Production Economics, 228 (2020), 107752. 
    [17] H. Gaspars-Wieloch, Newsvendor problem under complete uncertainty: A case of innovative products, Central European Journal of Operations Research, 25 (2017), 561-585.  doi: 10.1007/s10100-016-0458-3.
    [18] X. HanY. Yu and G. Hu, A dynamic newsvendor problem with goodwill-dependent demands and minimum commitment, Omega, 89 (2019), 242-256. 
    [19] F. Hillier and G. Lieberman, Introduction to Operations Research, 5$^th$ edition, Holden-Day, California, 1990.
    [20] J. HuberS. FleischmannM. Müller and H. Stuckenschmidt, A data-driven newsvendor problem: From data to decision, European Journal of Operational Research, 278 (2019), 904-915.  doi: 10.1016/j.ejor.2019.04.043.
    [21] L. Johnson and D. Montgomery, Operations Research in Production Planning, Scheduling and Inventory Control, John Wiley, New York, 1974.
    [22] J. Kamburowski, The distribution-free newsboy under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112.  doi: 10.1016/j.ejor.2014.01.066.
    [23] A. B. KatariyaS. Çetinkaya and E. Tekin, On the comparison of the risk-neutral and risk-averse newsvendor problems, Journal of Operational Research Society, 65 (2014), 1090-1107. 
    [24] G. J. Kyparisis and C. Koulamas, The price-setting newsvendor with non-linear salvage revenue and shortage cost, Operations Research Letters, 46 (2018), 64-68.  doi: 10.1016/j.orl.2017.11.001.
    [25] C. LiuA. N. Letchford and I. Svetukov, Newsvendor problems: An integrated method for estimation and optimization, European Journal of Operational Research, 300 (2022), 590-601.  doi: 10.1016/j.ejor.2021.08.013.
    [26] C. NatarayanM. Sim and J. Uichanco, Asmmetry and ambiguity in newsvendor models, Management Science, 64 (2018), 3146-3167. 
    [27] A. NinhH. Hu and D. Allen, Robust newsvendor problems: Effevt of discrete demands, Annals of Operations Research, 275 (2019), 607-621.  doi: 10.1007/s10479-018-3016-7.
    [28] S. O'NeilX. ZhaoD. Sun and J. C. Wei, Newsvendor problems with demand shocks and unknown demand distributions, Decision Sciences, 47 (2016), 125-156. 
    [29] İ. ÖzcanJ.D. 'SledzińskiS. Z. A. GökM. Butlewski and G. W. Weber, Mathematical encouragement of companies to cooperate by using cooperative games with fuzzy approach, Journal of Industrial and Management Optimization, 19 (2023), 7180-7195.  doi: 10.3934/jimo.2022258.
    [30] G. Perakis and G. Roels, Regret in the newsvendor model with partial information, Operations Research, 216 (2011), 188-203.  doi: 10.1287/opre.1070.0486.
    [31] N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A rewiew with extensions, Operations Research, 47 (1999), 183-194. 
    [32] Y. QinR. WangA. J. VakhariaC. Yuwen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.
    [33] K. Rajaram, Assortment planing infashion retailing: Methodology, application and analysis, European Journal of Operational Research, 129 (2001), 186-208. 
    [34] E. Savku and G. W. Weber, The stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market, Annals of Operations Research, 312 (2022), 1171-1196.  doi: 10.1007/s10479-020-03768-5.
    [35] H. Scarf, A min-max solution of the inventory problem, Studies in the Mathematical Theory of Inventory and Production, Stanford University Press, (1958), 201-209.
    [36] H. Scarf, The optimality of (S, s) policies in the dynamic inventory problem, Mathematical Methods in the Social Science, Stanford University Press, (1959), 196-202.
    [37] A. StachowiakŁ. HadaśP. Cyplik and M. Fertsch, Decison model for sustainable and agile resources management, IFAC Proceedings, 46 (2013), 1140-1145. 
    [38] T. L. Urban, Visualising newsvendor profits: The single period problem with location scale demand distribution, Journal of the Operational Research Society, 72 (2021), 23-34. 
    [39] N. van der LaanR. H. TeunterW. Romeijenders and O. A. Killic, The data-driven newsvendor problem: Achieving on target service levels using distributionally robust chance constrained optimization, International Journal of Production Economics, 249 (2022), 108509. 
    [40] T. Ye and H. Sun, Price-setting newsvendor with strategic consumers, Omega, 63 (2016), 103-110. 
    [41] Z. ZhouX. LiuF. ZhongY. Cao and L. Zheng, Retailer's willingness to adopt blockchain technology based on private demand information, Journal of Industrial and Management Optimization, 19 (2023), 3287-3328.  doi: 10.3934/jimo.2022087.
  • 加载中

Figures(8)

Tables(7)

SHARE

Article Metrics

HTML views(2052) PDF downloads(411) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return