No | Uncertain Sets |
1 | $ \xi_1 = (0.02, 0.04, 0.06) $ |
2 | $ \xi_2=(0.01, 0.04, 0.05, 0.07) $ |
3 | $ \xi_3= (0.01, 0.03, 0.09) $ |
4 | $ \xi_4= (-0.02, 0.04, 0.08) $ |
5 | $ \xi_5=(-0.01, 0.05, 0.07, 0.09) $ |
6 | $ \xi_6= (0.03, 0.07, 0.11) $ |
Tsallis entropy is a flexible device to measure indeterminacy of uncertain sets. A formula is obtained to calculate Tsallis entropy of uncertain sets via inversion of membership functions. Also, by considering Tsallis entropy as a risk measure, we optimize portfolio selection problems via mean-entropy models.
Citation: |
Table 1. Securities
No | Uncertain Sets |
1 | $ \xi_1 = (0.02, 0.04, 0.06) $ |
2 | $ \xi_2=(0.01, 0.04, 0.05, 0.07) $ |
3 | $ \xi_3= (0.01, 0.03, 0.09) $ |
4 | $ \xi_4= (-0.02, 0.04, 0.08) $ |
5 | $ \xi_5=(-0.01, 0.05, 0.07, 0.09) $ |
6 | $ \xi_6= (0.03, 0.07, 0.11) $ |
Table 2. Expected value and Tsallis entropy
No | Expected value | Tsallis entropy |
$ \xi_1 $ | 0.04 | 0.01 |
$ \xi_2 $ | 0.0425 | 0.0125 |
$ \xi_3 $ | 0.04 | 0.02 |
$ \xi_4 $ | 0.035 | 0.025 |
$ \xi_5 $ | 0.05 | 0.02 |
$ \xi_6 $ | 0.07 | 0.02 |
Table 3. Optimal values in Model (3)
$ \lambda $ | $ (y_1, y_2, y_3, y_4, y_5, y_6) $ | Expected value |
0.011 | (0.9, 0, 0, 0, 0, 0.1) | 0.043 |
0.012 | (0.8, 0, 0, 0, 0, 0.2) | 0.046 |
0.013 | (0.7, 0, 0, 0, 0, 0.3) | 0.049 |
0.015 | (0.5, 0, 0, 0, 0, 0.5) | 0.055 |
0.017 | (0.3, 0, 0, 0, 0, 0.7) | 0.061 |
0.019 | (0.1, 0, 0, 0, 0, 0.9) | 0.067 |
Table 4. Optimal values in Model (4)
$ \delta $ | $ (y_1, y_2, y_3, y_4, y_5, y_6) $ | Tsallis entropy |
0.045 | (0.84, 0, 0, 0, 0, 0.16) | 0.0117 |
0.048 | (0.74, 0, 0, 0, , 0, 0.26) | 0.0127 |
0.051 | (0.63, 0, 0, 0, 0, 0.37) | 0.0137 |
0.057 | (0.43, 0, 0, 0, 0, 0.57) | 0.0157 |
0.059 | (0.37, 0, 0, 0, 0, 0.63) | 0.0163 |
0.061 | (0.3, 0, 0, 0, 0, 0.7) | 0.017 |
0.064 | (0.2, 0, 0, 0, 0, 0.8) | 0.018 |
0.067 | (0.1, 0, 0, 0, 0, 0.9) | 0.019 |
Table 5. Securities
No | Uncertain sets |
1 | $ \xi_1 = (0.03, 0.05, 0.07) $ |
2 | $ \xi_2=(-0.01, 0.04, 0.09) $ |
3 | $ \xi_3= (0.02, 0.22, 0.42) $ |
4 | $ \xi_4= (0.01, 0.11, 0.21) $ |
5 | $ \xi_5=(0.03, 0.07, 0.11) $ |
6 | $ \xi_6= (0.02, 0.07, 0.12) $ |
7 | $ \xi_7= (0.13, 0.23, 0.33) $ |
8 | $ \xi_8= (0.2, 0.32, 0.44) $ |
9 | $ \xi_9= (0.1, 0.22, 0.34) $ |
10 | $ \xi_{10}= (0.25, 0.3, 0.35) $ |
Table 6. Optimal values in Models (5) and (6)
Model | $ (y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}) $ | Performance ratio |
Mean-entropy | (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) | 12 |
Mean-variance | (0.73, 0, 0, 0, 0, 0, 0, 0, 0, 0.27) | 8.36 |
Table 7. Analysis of 3 indices in Models (7) and (8)
Pair | Asymp.Sig.(Right-tailed) |
(CHIME-CHIMV) | 0 |
(CRIME-CRIMV) | 0 |
(CCCIME-CCCIMV) | 0 |
[1] |
S. Agarwal and N. B. Muppalaneni, Portfolio optimization in stocks using mean-variance optimization and the efficient frontier, International Journal of Information Technology, 14 (2022), 2917-2926.
doi: 10.1007/s41870-022-01052-2.![]() ![]() |
[2] |
J. Agouram and G. Lakhnati, A comparative study of mean-variance and mean gini portfolio selection using VaR and CVaR, Journal of Financial Risk Management, 4 (2015), 72-81.
![]() |
[3] |
H. Ahmadzade and R. Gao, Covariance of uncertain random variables and its application to portfolio optimization, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 2613-2624.
![]() |
[4] |
L. Batra and H. C. Taneja, Portfolio optimization based on generalized information theoretic measures, Communications in Statistics-Theory and Methods, 51 (2022) 6367-6384.
doi: 10.1080/03610926.2020.1861294.![]() ![]() ![]() |
[5] |
J. Ben Amor and S. Chennaf, Uncertain random portfolio selection with high order moments, Journal of Industrial and Management Optimization, 19 (2023), 4495-4522.
doi: 10.3934/jimo.2022139.![]() ![]() ![]() |
[6] |
C. Cali, M. Longobardi and J. Ahmadi, Some properties of cumulative Tsallis entropy, Physica A, 486 (2017), 1012-1021.
doi: 10.1016/j.physa.2017.05.063.![]() ![]() ![]() |
[7] |
B. Chen, Y. Liu and T. Zhou, An entropy based solid transportation problem in uncertain environment, Journal of Ambient Intelligence and Humanized Computing, 10 (2019), 357-363.
![]() |
[8] |
X. Chen, S. Kar and D. A. Ralescu, Cross-entropy measure of uncertain variables, Information Sciences, 201 (2012), 53-60.
doi: 10.1016/j.ins.2012.02.049.![]() ![]() ![]() |
[9] |
X. W. Chen and W. Dai, Maximum entropy principle for uncertain variables, International Journal of Fuzzy Systems, 13 (2011), 232-236.
![]() ![]() |
[10] |
G. Cheng, H. Ahmadzade and M. Farahikia, Uncertain random portfolio optimization via semi-variance, International Journal Machine Learning and Cybernetics, 13 (2022), 2533-2543.
![]() |
[11] |
S. Chennaf and J. B. Amor, Portfolio optimization of uncertain returns based on Tsallis entropy, Journal of Uncertain Systems, 16 (2023), 1-6.
![]() |
[12] |
W. Dai, Quadratic entropy of uncertain variables, Information: An International Interdisciplinary Journal, 2012. http://orsc.edu.cn/online/100707.pdf
![]() |
[13] |
A. Di Crescenzo and M. Longobardi, Neuronal data analysis based on the empirical cumulative entropy, Lecture Notes in Computer Science, LNCS. Springer, Berlin, 2012, 72-79.
![]() |
[14] |
R. Gao, H. Ahmadzade, K. Rezaei, H. Rezaei and H. Naderi, Partial similarity measure of uncertain random variables and its application to portfolio selection, Journal of Intelligent and Fuzzy Systems, 39 (2020), 155-166.
![]() |
[15] |
R. Gao and D. A. Ralescu, Elliptic entropy of uncertain set and its applications, International Journal of Intelligent Systems, 33 (2018), 836-857.
![]() |
[16] |
Z. He, H. Ahmadzade, K. Rezaei, H. Rezaei and H. Naderi, Tsallis entropy of uncertain random variables and its application, Soft Computing, 25 (2021), 11735-11743.
![]() |
[17] |
J. Horvath, Suggestion for a comprehensive measure of concentration, South Economics Journal, 36 (1970), 446-452.
![]() |
[18] |
X. Huang, Mean-variance models for portfolio selection subject to experts estimations, Expert Systems with Applications, 39 (2012), 5887-5893.
![]() |
[19] |
X. Huang and H. Di, Uncertain portfolio selection with background risk, Applied Mathematics and Computation, 276 (2016), 284-296.
doi: 10.1016/j.amc.2015.12.018.![]() ![]() ![]() |
[20] |
M. Kar, S. Majumder, S. Kar and T. Pal, Cross-entropy based multi-objective uncertain portfolio selection problem, Journal of Intelligent and Fuzzy Systems, 32 (2017), 4467-4483.
![]() |
[21] |
D. P. Kroese, T. Brereton, T. Taimre and Z. I. Botev, Why the Monte Carlo method is so important today, WIREs Comput Stat., 6 (2014), 386-392.
![]() |
[22] |
B. Li and Y. Shu, The skewness for uncertain random variable and application to portfolio selection problem, Journal of Industrial and Management Optimization, 18 (2022), 457-467.
doi: 10.3934/jimo.2020163.![]() ![]() ![]() |
[23] |
B. Liu, Uncertain set theory and uncertain inference rule with application to uncertain control, Journal of Uncertain Systems, 4 (2010), 83-98.
![]() |
[24] |
S. G. Li and J. Peng, Elliptic entropy of uncertain variables, Available at http://orsc.edu.cn/online/120421.pdf. Accessed. December 11, 2017.
![]() |
[25] |
X. Liang, J. Xie, Z. Miao, Y. Xu and Y. Feng, Two parameter generalized entropy of uncertain random variables and its application, Journal of Ambient Intelligence and Humanized Computing, 14 (2022), 16337-16346.
![]() |
[26] |
B. Liu, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin, 2007.
![]() |
[27] |
B. Liu, Uncertain set theory and uncertain inference rule with application to uncertain control, Journal of Uncertain Systems, 4 (2010), 83-98.
![]() |
[28] |
B. Liu, Uncertain logic for modeling human language, Journal of Uncertain Systems, 5 (2011), 3-20.
![]() |
[29] |
B. Liu, Membership functions and operational law of uncertain sets, Fuzzy Optimization and Decision Making, 11 (2012), 387-410.
doi: 10.1007/s10700-012-9128-7.![]() ![]() ![]() |
[30] |
B. Liu, A new definition of independence of uncertain sets, Fuzzy Optimization and Decision Making, 12 (2013), 451-461.
doi: 10.1007/s10700-013-9164-y.![]() ![]() ![]() |
[31] |
J. Liu, H. Ahmadzade and H. Zarei, Portfolio optimization of uncertain random returns based on partial exponential entropy, Journal of Uncertain Systems, 15 (2022), 2250004.
![]() |
[32] |
Y. Liu, H. Ahmadzade and M. Farahikia, Portfolio selection of uncertain random returns based on value at risk, Soft Computing, 25 (2021), 6339-6346.
![]() |
[33] |
R. N. Lu and X. S. Wang, Triangular entropy of uncertain sets, Information: International Interdisciplinary Journal, 16 (2013), 1249-1256.
![]() |
[34] |
H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investment, Wiley, New York, 1959.
![]() ![]() |
[35] |
Y. Ning, H. Ke and Z. Fu, Triangular entropy of uncertain variables with application to portfolio selection, Soft Computing, 19 (2015), 2203-2209.
![]() |
[36] |
Z. Qin, S. Kar and H. Zheng, Uncertain portfolio adjusting model using semiabsolute deviation, Soft Computing, 20 (2016), 717-725.
![]() |
[37] |
M. Rao, Y. Chen, B. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Transactions on Information Theory, 50 (2004), 1220-1228.
doi: 10.1109/TIT.2004.828057.![]() ![]() ![]() |
[38] |
A. Renyi, On measures of entropy and information, in Proc. 4th Berkeley Symp. Mathematical Statistics Probability, Berkeley, CA: Univ. Calif. Press., 1 (1961), 547-561.
![]() |
[39] |
C. Shannon, A mathematical theory of communication, Bell System Techcnical Journal, 27 (1948), 373-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x.![]() ![]() ![]() |
[40] |
G. Shi, Y. Sheng and C. Qing, Relative entropy model of uncertain random shortest path, International Journal of e-Navigation and Maritime Economy, 2 (2015), 87-100.
![]() |
[41] |
W. P. Tang and W. N. Gao, Triangular entropy of uncertain variables, Information: International Interdisciplinary Journal, 16 (2013), 1279-1282.
![]() |
[42] |
E. Ustaoglu and A. Evren, Minimum tsallis portfolio, Journal of Research in Business, 7 (2022), 90-102.
![]() |
[43] |
X. Wang and M. Ha, Quadratic entropy of uncertain sets, Fuzzy Optimization Decision Making, 12 (2013), 99-109.
doi: 10.1007/s10700-012-9140-y.![]() ![]() ![]() |
[44] |
W. Woerheide and D. Persson, An index of portfolio diversification, Finance Service Review, 2 (1993), 73-85.
![]() |
[45] |
Q. Wu, X. Liu, J. Qin, L. Zhou, A. Mardani and M. Deveci, An integrated multi-criteria decision-making and multi-objective optimization model for socially responsible portfolio selection, Technological Forecasting and Social Change, 184 (2022), 121977.
![]() |
[46] |
Q. Wu, X. Liu, J. Qin, L. Zhou, A. Mardani and M. Deveci, An integrated generalized TODIM model for portfolio selection based on financial performance of firms, Knowledge-Based Systems, 249 (2022), 108794.
![]() |
[47] |
K. Yao, Sine entropy of uncertain set and its applications, Applied Soft Computing, 22 (2014), 432-442.
![]() |
[48] |
K. Yao and H. Ke, Entropy operator for membership function of uncertain set, Applied Mathematics and Computation, 242 (2014), 898-906.
doi: 10.1016/j.amc.2014.06.081.![]() ![]() ![]() |
[49] |
K. Yao and W. Dai, Sine entropy for uncertain variables, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, (2013), 1-11.
![]() |
[50] |
J. Zhou, C. Huang, M. Zhao and H. Li, Entropy and semi-entropies of LR fuzzy numbers' linear function with applications to fuzzy programming, Entropy, 21 (2019), 697.
doi: 10.3390/e21070697.![]() ![]() ![]() |
Function of
Comparative analysis of difference between performance ratio for same values of