\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Tsallis entropy of uncertain sets and its application to portfolio allocation

  • *Corresponding author: Hamed Ahmadzade

    *Corresponding author: Hamed Ahmadzade 
Abstract / Introduction Full Text(HTML) Figure(2) / Table(7) Related Papers Cited by
  • Tsallis entropy is a flexible device to measure indeterminacy of uncertain sets. A formula is obtained to calculate Tsallis entropy of uncertain sets via inversion of membership functions. Also, by considering Tsallis entropy as a risk measure, we optimize portfolio selection problems via mean-entropy models.

    Mathematics Subject Classification: Primary: 91G10; Secondary: 91G70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Function of $ T_{\beta}(s) $ for different values of $ \beta. $

    Figure 2.  Comparative analysis of difference between performance ratio for same values of $ b $ in Models (7) and (8)

    Table 1.  Securities

    No Uncertain Sets
    1 $ \xi_1 = (0.02, 0.04, 0.06) $
    2 $ \xi_2=(0.01, 0.04, 0.05, 0.07) $
    3 $ \xi_3= (0.01, 0.03, 0.09) $
    4 $ \xi_4= (-0.02, 0.04, 0.08) $
    5 $ \xi_5=(-0.01, 0.05, 0.07, 0.09) $
    6 $ \xi_6= (0.03, 0.07, 0.11) $
     | Show Table
    DownLoad: CSV

    Table 2.  Expected value and Tsallis entropy

    No Expected value Tsallis entropy
    $ \xi_1 $ 0.04 0.01
    $ \xi_2 $ 0.0425 0.0125
    $ \xi_3 $ 0.04 0.02
    $ \xi_4 $ 0.035 0.025
    $ \xi_5 $ 0.05 0.02
    $ \xi_6 $ 0.07 0.02
     | Show Table
    DownLoad: CSV

    Table 3.  Optimal values in Model (3)

    $ \lambda $ $ (y_1, y_2, y_3, y_4, y_5, y_6) $ Expected value
    0.011 (0.9, 0, 0, 0, 0, 0.1) 0.043
    0.012 (0.8, 0, 0, 0, 0, 0.2) 0.046
    0.013 (0.7, 0, 0, 0, 0, 0.3) 0.049
    0.015 (0.5, 0, 0, 0, 0, 0.5) 0.055
    0.017 (0.3, 0, 0, 0, 0, 0.7) 0.061
    0.019 (0.1, 0, 0, 0, 0, 0.9) 0.067
     | Show Table
    DownLoad: CSV

    Table 4.  Optimal values in Model (4)

    $ \delta $ $ (y_1, y_2, y_3, y_4, y_5, y_6) $ Tsallis entropy
    0.045 (0.84, 0, 0, 0, 0, 0.16) 0.0117
    0.048 (0.74, 0, 0, 0, , 0, 0.26) 0.0127
    0.051 (0.63, 0, 0, 0, 0, 0.37) 0.0137
    0.057 (0.43, 0, 0, 0, 0, 0.57) 0.0157
    0.059 (0.37, 0, 0, 0, 0, 0.63) 0.0163
    0.061 (0.3, 0, 0, 0, 0, 0.7) 0.017
    0.064 (0.2, 0, 0, 0, 0, 0.8) 0.018
    0.067 (0.1, 0, 0, 0, 0, 0.9) 0.019
     | Show Table
    DownLoad: CSV

    Table 5.  Securities

    No Uncertain sets
    1 $ \xi_1 = (0.03, 0.05, 0.07) $
    2 $ \xi_2=(-0.01, 0.04, 0.09) $
    3 $ \xi_3= (0.02, 0.22, 0.42) $
    4 $ \xi_4= (0.01, 0.11, 0.21) $
    5 $ \xi_5=(0.03, 0.07, 0.11) $
    6 $ \xi_6= (0.02, 0.07, 0.12) $
    7 $ \xi_7= (0.13, 0.23, 0.33) $
    8 $ \xi_8= (0.2, 0.32, 0.44) $
    9 $ \xi_9= (0.1, 0.22, 0.34) $
    10 $ \xi_{10}= (0.25, 0.3, 0.35) $
     | Show Table
    DownLoad: CSV

    Table 6.  Optimal values in Models (5) and (6)

    Model $ (y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}) $ Performance ratio
    Mean-entropy (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 12
    Mean-variance (0.73, 0, 0, 0, 0, 0, 0, 0, 0, 0.27) 8.36
     | Show Table
    DownLoad: CSV

    Table 7.  Analysis of 3 indices in Models (7) and (8)

    Pair Asymp.Sig.(Right-tailed)
    (CHIME-CHIMV) 0
    (CRIME-CRIMV) 0
    (CCCIME-CCCIMV) 0
     | Show Table
    DownLoad: CSV
  • [1] S. Agarwal and N. B. Muppalaneni, Portfolio optimization in stocks using mean-variance optimization and the efficient frontier, International Journal of Information Technology, 14 (2022), 2917-2926.  doi: 10.1007/s41870-022-01052-2.
    [2] J. Agouram and G. Lakhnati, A comparative study of mean-variance and mean gini portfolio selection using VaR and CVaR, Journal of Financial Risk Management, 4 (2015), 72-81. 
    [3] H. Ahmadzade and R. Gao, Covariance of uncertain random variables and its application to portfolio optimization, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 2613-2624. 
    [4] L. Batra and H. C. Taneja, Portfolio optimization based on generalized information theoretic measures, Communications in Statistics-Theory and Methods, 51 (2022) 6367-6384. doi: 10.1080/03610926.2020.1861294.
    [5] J. Ben Amor and S. Chennaf, Uncertain random portfolio selection with high order moments, Journal of Industrial and Management Optimization, 19 (2023), 4495-4522.  doi: 10.3934/jimo.2022139.
    [6] C. CaliM. Longobardi and J. Ahmadi, Some properties of cumulative Tsallis entropy, Physica A, 486 (2017), 1012-1021.  doi: 10.1016/j.physa.2017.05.063.
    [7] B. ChenY. Liu and T. Zhou, An entropy based solid transportation problem in uncertain environment, Journal of Ambient Intelligence and Humanized Computing, 10 (2019), 357-363. 
    [8] X. ChenS. Kar and D. A. Ralescu, Cross-entropy measure of uncertain variables, Information Sciences, 201 (2012), 53-60.  doi: 10.1016/j.ins.2012.02.049.
    [9] X. W. Chen and W. Dai, Maximum entropy principle for uncertain variables, International Journal of Fuzzy Systems, 13 (2011), 232-236. 
    [10] G. ChengH. Ahmadzade and M. Farahikia, Uncertain random portfolio optimization via semi-variance, International Journal Machine Learning and Cybernetics, 13 (2022), 2533-2543. 
    [11] S. Chennaf and J. B. Amor, Portfolio optimization of uncertain returns based on Tsallis entropy, Journal of Uncertain Systems, 16 (2023), 1-6. 
    [12] W. Dai, Quadratic entropy of uncertain variables, Information: An International Interdisciplinary Journal, 2012. http://orsc.edu.cn/online/100707.pdf
    [13] A. Di Crescenzo and M. Longobardi, Neuronal data analysis based on the empirical cumulative entropy, Lecture Notes in Computer Science, LNCS. Springer, Berlin, 2012, 72-79.
    [14] R. GaoH. AhmadzadeK. RezaeiH. Rezaei and H. Naderi, Partial similarity measure of uncertain random variables and its application to portfolio selection, Journal of Intelligent and Fuzzy Systems, 39 (2020), 155-166. 
    [15] R. Gao and D. A. Ralescu, Elliptic entropy of uncertain set and its applications, International Journal of Intelligent Systems, 33 (2018), 836-857. 
    [16] Z. HeH. AhmadzadeK. RezaeiH. Rezaei and H. Naderi, Tsallis entropy of uncertain random variables and its application, Soft Computing, 25 (2021), 11735-11743. 
    [17] J. Horvath, Suggestion for a comprehensive measure of concentration, South Economics Journal, 36 (1970), 446-452. 
    [18] X. Huang, Mean-variance models for portfolio selection subject to experts estimations, Expert Systems with Applications, 39 (2012), 5887-5893. 
    [19] X. Huang and H. Di, Uncertain portfolio selection with background risk, Applied Mathematics and Computation, 276 (2016), 284-296.  doi: 10.1016/j.amc.2015.12.018.
    [20] M. KarS. MajumderS. Kar and T. Pal, Cross-entropy based multi-objective uncertain portfolio selection problem, Journal of Intelligent and Fuzzy Systems, 32 (2017), 4467-4483. 
    [21] D. P. KroeseT. BreretonT. Taimre and Z. I. Botev, Why the Monte Carlo method is so important today, WIREs Comput Stat., 6 (2014), 386-392. 
    [22] B. Li and Y. Shu, The skewness for uncertain random variable and application to portfolio selection problem, Journal of Industrial and Management Optimization, 18 (2022), 457-467.  doi: 10.3934/jimo.2020163.
    [23] B. Liu, Uncertain set theory and uncertain inference rule with application to uncertain control, Journal of Uncertain Systems, 4 (2010), 83-98. 
    [24] S. G. Li and J. Peng, Elliptic entropy of uncertain variables, Available at http://orsc.edu.cn/online/120421.pdf. Accessed. December 11, 2017.
    [25] X. LiangJ. XieZ. MiaoY. Xu and Y. Feng, Two parameter generalized entropy of uncertain random variables and its application, Journal of Ambient Intelligence and Humanized Computing, 14 (2022), 16337-16346. 
    [26] B. Liu, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin, 2007.
    [27] B. Liu, Uncertain set theory and uncertain inference rule with application to uncertain control, Journal of Uncertain Systems, 4 (2010), 83-98. 
    [28] B. Liu, Uncertain logic for modeling human language, Journal of Uncertain Systems, 5 (2011), 3-20. 
    [29] B. Liu, Membership functions and operational law of uncertain sets, Fuzzy Optimization and Decision Making, 11 (2012), 387-410.  doi: 10.1007/s10700-012-9128-7.
    [30] B. Liu, A new definition of independence of uncertain sets, Fuzzy Optimization and Decision Making, 12 (2013), 451-461.  doi: 10.1007/s10700-013-9164-y.
    [31] J. LiuH. Ahmadzade and H. Zarei, Portfolio optimization of uncertain random returns based on partial exponential entropy, Journal of Uncertain Systems, 15 (2022), 2250004. 
    [32] Y. LiuH. Ahmadzade and M. Farahikia, Portfolio selection of uncertain random returns based on value at risk, Soft Computing, 25 (2021), 6339-6346. 
    [33] R. N. Lu and X. S. Wang, Triangular entropy of uncertain sets, Information: International Interdisciplinary Journal, 16 (2013), 1249-1256. 
    [34] H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investment, Wiley, New York, 1959.
    [35] Y. NingH. Ke and Z. Fu, Triangular entropy of uncertain variables with application to portfolio selection, Soft Computing, 19 (2015), 2203-2209. 
    [36] Z. QinS. Kar and H. Zheng, Uncertain portfolio adjusting model using semiabsolute deviation, Soft Computing, 20 (2016), 717-725. 
    [37] M. RaoY. ChenB. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Transactions on Information Theory, 50 (2004), 1220-1228.  doi: 10.1109/TIT.2004.828057.
    [38] A. Renyi, On measures of entropy and information, in Proc. 4th Berkeley Symp. Mathematical Statistics Probability, Berkeley, CA: Univ. Calif. Press., 1 (1961), 547-561.
    [39] C. Shannon, A mathematical theory of communication, Bell System Techcnical Journal, 27 (1948), 373-423.  doi: 10.1002/j.1538-7305.1948.tb01338.x.
    [40] G. ShiY. Sheng and C. Qing, Relative entropy model of uncertain random shortest path, International Journal of e-Navigation and Maritime Economy, 2 (2015), 87-100. 
    [41] W. P. Tang and W. N. Gao, Triangular entropy of uncertain variables, Information: International Interdisciplinary Journal, 16 (2013), 1279-1282. 
    [42] E. Ustaoglu and A. Evren, Minimum tsallis portfolio, Journal of Research in Business, 7 (2022), 90-102. 
    [43] X. Wang and M. Ha, Quadratic entropy of uncertain sets, Fuzzy Optimization Decision Making, 12 (2013), 99-109.  doi: 10.1007/s10700-012-9140-y.
    [44] W. Woerheide and D. Persson, An index of portfolio diversification, Finance Service Review, 2 (1993), 73-85. 
    [45] Q. WuX. LiuJ. QinL. ZhouA. Mardani and M. Deveci, An integrated multi-criteria decision-making and multi-objective optimization model for socially responsible portfolio selection, Technological Forecasting and Social Change, 184 (2022), 121977. 
    [46] Q. WuX. LiuJ. QinL. ZhouA. Mardani and M. Deveci, An integrated generalized TODIM model for portfolio selection based on financial performance of firms, Knowledge-Based Systems, 249 (2022), 108794. 
    [47] K. Yao, Sine entropy of uncertain set and its applications, Applied Soft Computing, 22 (2014), 432-442. 
    [48] K. Yao and H. Ke, Entropy operator for membership function of uncertain set, Applied Mathematics and Computation, 242 (2014), 898-906.  doi: 10.1016/j.amc.2014.06.081.
    [49] K. Yao and W. Dai, Sine entropy for uncertain variables, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, (2013), 1-11.
    [50] J. ZhouC. HuangM. Zhao and H. Li, Entropy and semi-entropies of LR fuzzy numbers' linear function with applications to fuzzy programming, Entropy, 21 (2019), 697.  doi: 10.3390/e21070697.
  • 加载中

Figures(2)

Tables(7)

SHARE

Article Metrics

HTML views(1855) PDF downloads(233) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return