\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Comparison of lot streaming division methodologies for multi-objective hybrid flowshop scheduling problem by considering limited waiting time

  • *Corresponding author: Beren Gürsoy Yılmaz

    *Corresponding author: Beren Gürsoy Yılmaz 
Abstract / Introduction Full Text(HTML) Figure(14) / Table(10) Related Papers Cited by
  • In this paper, a multi-objective hybrid flowshop scheduling problem (HFSP) with limited waiting time and machine capability constraints is addressed. Given its importance, the implementation of lot streaming division methodologies with the problem is investigated through a design of experiment (DoE) setting based on real data extracted from a leading tire manufacturer in Gebze, Turkey. By doing so, specific characteristics of the addressed HFSP can be further explored to provide insights into its complexity and suggest recommendations for improving the operational efficiency of such systems resembling it. Based on the problem specifications and constraints, a novel generic multi-objective optimization model with objectives including the makespan, the average flow time, and the total workload imbalance is formulated. Since the studied problem is NP-hard in the strong sense, several algorithms based on the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ) are proposed according to the division methodologies, i.e., consistent sublots and equal sublots. Since the main aim of this problem is to further analyze the implementation of lot streaming on the HFSP problem, the developed algorithms are compared with each other to gain remarkable insights into the problem. Four different comparison metrics are employed to assess the solution quality of the proposed algorithms in terms of intensification and diversification aspects. Computational results demonstrate that employing the consistent sublot methodology leads to significant improvements in all metrics compared to the equal sublot methodology.

    Mathematics Subject Classification: Primary: 90B35, 90C11; Secondary: 90C27.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The facility layout showing supermarkets, machines, and stages

    Figure 2.  Gantt chart with objective function values

    Figure 3.  The proposed algorithms along with strategies and operators

    Figure 4.  The chromosome structure and decoding procedure: (a) chromosome structure, (b) first phase of, (c) second phase of, (d) third phase of decoding procedure

    Figure 5.  The NSGA-Ⅱ operators: (a) one-point crossover, (b) two-point crossover, and (c) swapping mutation operator

    Figure 6.  The box plots of the proposed algorithms with respect to $ D1_R $ metric for all levels of $ L $: (a) $ L $ = 10. (b) $ L $ = 20. (c)$ L $ = 30. (d) $ L $ = 40

    Figure 7.  The average C metric values of the proposed algorithms for all levels of L

    Figure 8.  The box -plots of the proposed algorithms with respect to $ OS $ metric for all levels of $ L $: (a) $ L $ = 10. (b) $ L $ = 20. (c)$ L $ = 30. (d) $ L $ = 40

    Figure 9.  The average OS metric values for pairwise comparisons of the proposed algorithms for all levels of L

    Figure 10.  The average number of non-dominated solutions achieved by the proposed algorithms for all levels of $ L $

    Figure 11.  Main effects and interaction plots for $ L $ = 10

    Figure 12.  Main effects and interaction plots for $ L $ = 20

    Figure 13.  Main effects and interaction plots for $ L $ = 30

    Figure 14.  Main effects and interaction plots for $ L $ = 40

    Table 1.  The number of variables and constraints in the optimization model

    Variables Count Constraints Count
    $ CT_{bs} $ $ B\times S $ (4), (14-16), (18) $ L\times S\times B $
    $ PT_{bs} $ $ B\times S $ (5), (6) 1
    $ L1_{bsm} $ $ B\times S\times M $ (7), (8) $ S\times M $
    $ Y_{lb} $ $ L\times B $ (9), (13) $ S\times B $
    $ XW_s $ $ S $ (10), (12) $ L\times S\times M\times B $
    $ NW_s $ $ S $ (11) L
    $ N_{bs} $ $ B\times S $ (17), (21-23) $ L\times (L-1) \times S\times B\times (B-1)\times M $
    $ W_b $ $ B $ (19), (20) $ L\times B $
    $ X_{bsm} $ $ B\times S\times M $
    $ Z_{bb^{'}sm} $ $ B\times (B-1) \times S\times M $
     | Show Table
    DownLoad: CSV

    Table 2.  The controlled factors and parameters

    Levels
    Factors 1 2 3
    M 4 6 8
    S 2 6 10
    B 2 6 10
    L 10-20-30-40
    Parameters Data pattern
    LS Uniform [30-100]
    PT Uniform [10-20]
    WT 1000 w.r.t L=10
    3000 w.r.t L=20
    6000 w.r.t L=20
    9000 w.r.t L=30
     | Show Table
    DownLoad: CSV

    Table 3.  Performance of NSGA-Ⅱ-CSC1 algorithm for different input parameter settings

    $ cp $ $ mp $ $ ps $ $ D1_R $ $ cp $ $ mp $ $ ps $ $ D1_R $
    L=10 0.8 0.05 L×6 0.012 L=20 0.8 0.05 L×6 0.018
    0.8 0.05 L×12 0.012 0.8 0.05 L ×12 0.017
    0.8 0.1 L×6 0.018 0.8 0.1 L ×6 0.028
    0.8 0.1 L×12 0.016 0.8 0.1 L ×12 0.026
    0.9 0.05 L×6 0.014 0.9 0.05 L ×6 0.022
    0.9 0.05 L×12 0.013 0.9 0.05 L ×12 0.019
    0.9 0.1 L×6 0.021 0.9 0.1 L ×6 0.030
    0.9 0.1 L×12 0.018 0.9 0.1 L ×12 0.027
    $ cp $ $ mp $ $ ps $ $ D1_R $ $ cp $ $ mp $ $ ps $ $ D1_R $
    L=30 0.8 0.05 L×6 0.030 L=40 0.8 0.05 L×6 0.035
    0.8 0.05 L×12 0.029 0.8 0.05 L ×12 0.033
    0.8 0.1 L×6 0.036 0.8 0.1 L ×6 0.062
    0.8 0.1 L×12 0.030 0.8 0.1 L ×12 0.046
    0.9 0.05 L×6 0.051 0.9 0.05 L ×6 0.040
    0.9 0.05 L×12 0.048 0.9 0.05 L ×12 0.038
    0.9 0.1 L ×6 0.036 0.9 0.1 L ×6 0.056
    0.9 0.1 L×12 0.033 0.9 0.1 L ×12 0.048
     | Show Table
    DownLoad: CSV

    Table 4.  The $ D1_R $ metric values of the proposed algorithms for L = 10 and L = 20

    L=10 L=20
    B S M P1 P2 P3 P4 P1 P2 P3 P4
    1 1 1 0.29 0.40 0.03 0.02 0.42 0.58 0.11 0.02
    1 1 2 0.32 1.12 0.20 0.00 0.10 0.24 0.02 0.02
    1 1 3 0.28 2.58 0.70 0.01 0.18 0.34 0.04 0.03
    1 2 1 0.36 0.76 0.09 0.00 0.34 0.54 0.13 0.00
    1 2 2 0.05 0.06 0.02 0.00 0.09 0.29 0.05 0.00
    1 2 3 0.22 0.32 0.05 0.03 0.09 0.11 0.04 0.01
    1 3 1 0.55 1.67 0.21 0.01 0.29 0.64 0.12 0.00
    1 3 2 0.19 0.59 0.12 0.02 0.16 0.22 0.00 0.03
    1 3 3 0.13 0.24 0.02 0.03 0.24 0.37 0.04 0.07
    2 1 1 0.84 1.13 0.73 0.00 0.09 0.21 0.02 0.00
    2 1 2 0.25 0.20 0.09 0.00 0.51 0.91 0.20 0.00
    2 1 3 0.20 0.33 0.02 0.00 0.47 0.57 0.15 0.02
    2 2 1 0.75 1.08 0.11 0.01 0.50 1.07 0.09 0.00
    2 2 2 0.26 0.45 0.08 0.00 1.10 2.17 0.07 0.03
    2 2 3 0.14 0.39 0.02 0.01 0.14 0.22 0.06 0.00
    2 3 1 0.37 0.25 0.05 0.00 0.43 0.41 0.05 0.00
    2 3 2 0.07 0.16 0.04 0.01 0.03 0.23 0.02 0.02
    2 3 3 0.17 0.49 0.06 0.04 0.69 0.80 0.26 0.00
    3 1 1 3.58 8.17 0.81 0.00 0.09 0.41 0.13 0.00
    3 1 2 0.66 2.22 0.11 0.00 0.39 0.52 0.07 0.00
    3 1 3 0.42 0.53 0.10 0.00 0.09 0.51 0.21 0.02
    3 2 1 1.91 2.68 1.05 0.00 0.19 0.96 0.07 0.00
    3 2 2 0.22 0.29 0.19 0.01 0.65 0.82 0.17 0.00
    3 2 3 0.08 0.32 0.04 0.01 0.03 0.21 0.11 0.00
    3 3 1 0.32 0.61 0.26 0.00 0.21 0.47 0.00 0.01
    3 3 2 0.68 0.92 0.08 0.03 0.33 0.64 0.07 0.01
    3 3 3 0.28 0.58 0.20 0.01 0.41 0.96 0.17 0.00
    Average 0.50 1.06 0.20 0.01 0.31 0.57 0.09 0.01
     | Show Table
    DownLoad: CSV

    Table 5.  The C metric values of the proposed algorithms for L = 10

    L=10
    B S M P1-P2 P2-P1 P1-P3 P3-P1 P1-P4 P4-P1
    1 1 1 0.22 0.00 0.00 1.00 0.00 1.00
    1 1 2 1.00 0.00 0.03 0.75 0.00 1.00
    1 1 3 1.00 0.00 0.65 0.00 0.00 1.00
    1 2 1 1.00 0.00 0.05 0.22 0.00 1.00
    1 2 2 1.00 0.00 0.02 0.15 0.00 0.83
    1 2 3 1.00 0.00 0.03 0.70 0.42 0.92
    1 3 1 1.00 0.00 0.00 0.72 0.00 1.00
    1 3 2 1.00 0.00 0.88 0.00 0.08 0.57
    1 3 3 0.25 0.02 0.00 1.00 0.10 0.58
    2 1 1 0.87 0.00 0.00 1.00 0.00 1.00
    2 1 2 0.00 0.88 0.00 0.88 0.00 0.88
    2 1 3 0.43 0.00 0.00 1.00 0.00 0.42
    2 2 1 0.45 0.00 0.00 1.00 0.00 1.00
    2 2 2 0.65 0.00 0.00 1.00 0.00 1.00
    2 2 3 1.00 0.00 0.00 1.00 0.00 0.38
    2 3 1 0.00 0.98 0.00 1.00 0.00 1.00
    2 3 2 0.05 0.03 0.03 0.78 0.00 0.87
    2 3 3 1.00 0.00 0.00 0.40 0.53 0.40
    3 1 1 0.07 0.02 0.00 1.00 0.00 1.00
    3 1 2 1.00 0.00 0.00 1.00 0.00 1.00
    3 1 3 1.00 0.00 0.00 0.98 0.00 1.00
    3 2 1 0.00 0.00 0.00 1.00 0.00 1.00
    3 2 2 0.52 0.00 0.03 0.67 0.00 0.67
    3 2 3 1.00 0.00 0.10 0.10 0.00 1.00
    3 3 1 0.32 0.02 0.00 0.05 0.00 1.00
    3 3 2 0.03 0.00 0.00 1.00 0.00 1.00
    3 3 3 0.00 0.00 0.55 0.88 0.00 1.00
    Average 0.59 0.07 0.09 0.71 0.04 0.87
     | Show Table
    DownLoad: CSV

    Table 6.  The OS metric values of the proposed algorithms for L = 10

    L=10
    B S M P1-P2 P1-P3 P1-P4 P2-P3 P2-P4 P3-P4
    1 1 1 0.17 0.05 0.43 0.31 2.55 6.34
    1 1 2 0.07 0.05 0.09 0.61 1.21 1.97
    1 1 3 0.04 0.05 0.13 1.33 3.20 2.42
    1 2 1 0.59 0.02 0.02 0.03 0.03 0.89
    1 2 2 0.45 0.11 0.03 0.23 0.06 0.28
    1 2 3 6.77 0.39 0.23 0.06 0.03 0.60
    1 3 1 0.29 0.30 0.41 1.05 1.45 1.39
    1 3 2 0.22 0.03 0.20 0.13 0.94 7.26
    1 3 3 2.30 0.15 0.10 0.07 0.04 0.63
    2 1 1 0.16 0.01 0.31 0.05 1.93 1.33
    2 1 2 0.28 0.42 0.22 1.48 0.77 0.52
    2 1 3 1.89 0.36 0.01 0.19 0.01 0.04
    2 2 1 0.00 0.00 0.00 0.75 0.93 1.24
    2 2 2 6.80 0.86 1.23 0.13 0.18 1.43
    2 2 3 0.52 0.05 0.07 0.10 0.13 1.33
    2 3 1 0.88 0.03 0.06 0.03 0.07 2.02
    2 3 2 2.90 0.71 0.28 0.25 0.10 0.39
    2 3 3 2.72 0.50 0.45 0.19 0.16 0.89
    3 1 1 3.45 1.91 0.23 0.55 0.07 0.12
    3 1 2 0.82 0.14 0.32 0.17 0.39 2.23
    3 1 3 3.09 0.91 0.35 0.29 0.11 0.38
    3 2 1 0.73 0.21 0.19 0.29 0.26 0.88
    3 2 2 0.81 1.47 0.25 1.81 0.31 0.17
    3 2 3 5.45 0.88 0.18 0.16 0.03 0.21
    3 3 1 3.96 4.98 0.94 1.26 0.24 0.19
    3 3 2 0.01 0.00 0.01 0.16 0.61 3.71
    3 3 3 2.89 6.49 6.34 2.94 2.54 0.86
    Average 1.79 0.78 0.48 0.54 0.68 1.47
     | Show Table
    DownLoad: CSV

    Table 7.  Three-way ANOVA with respect to $ D1_R $ metric for L = 10

    Three-way ANOVA: $ D1_R $ versus $ B $, $ S $, and $ M $ for L=10
    Source DF Adj SS Adj MS F-Value P-Value Partial eta squared
    $ B $ 2 5.534 2.7669 3.84 0.025* 0.609
    $ S $ 2 4.606 2.3028 3.2 0.046* 0.511
    $ M $ 2 7.204 3.6019 5 0.009* 0.77
    $ B*S $ 4 3.594 0.8985 1.25 0.298 0.406
    $ B*M $ 4 7.212 1.803 2.5 0.049* 0.77
    $ S*M $ 4 2.332 0.583 0.81 0.523 0.273
    $ B*S*M $ 8 9.391 1.1738 1.63 0.129 0.673
    Error 81 58.335 0.7202
    Total 107 98.207
    R-sq R-sq(adj)
    0.806 0.7153
    P-Value $ \le $ 0.05 means a significant difference
     | Show Table
    DownLoad: CSV

    Table 8.  Three-way ANOVA with respect to $ D1_R $ metric for L = 20

    Three-way ANOVA: $ D1_R $ versus $ B $, $ S $, and $ M $ for L=20
    Source DF Adj SS Adj MS F-Value P-Value Partial eta squared
    $ B $ 2 0.4335 0.2167 2.09 0.13 0.392
    $ S $ 2 0.1059 0.0539 0.51 0.602 0.096
    $ M $ 2 0.0907 0.0453 0.44 0.647 0.088
    $ B*S $ 4 0.2643 0.066 0.64 0.637 0.248
    $ B*M $ 4 0.435 0.1087 1.05 0.387 0.384
    $ S*M $ 4 1.0026 0.2506 2.42 0.055 0.848
    $ B*S*M $ 8 0.5916 0.0739 0.71 0.678 0.528
    Error 81 8.3886 0.1035
    Total 107 11.3122
    R-sq R-sq(adj)
    0.7584 0.6753
    P-Value $ \le $ 0.05 means a significant difference
     | Show Table
    DownLoad: CSV

    Table 9.  Three-way ANOVA with respect to $ D1_R $ metric for L = 30

    Three-way ANOVA: $ D1_R $ versus $ B $, $ S $, and $ M $ for L=30
    Source DF Adj SS Adj MS F-Value P-Value Partial eta squared
    $ B $ 2 1.0238 0.5119 1.61 0.207 0.266
    $ S $ 2 0.7697 0.3849 1.21 0.304 0.203
    $ M $ 2 0.6919 0.346 1.09 0.342 0.182
    $ B*S $ 4 1.7575 0.4394 1.38 0.249 0.441
    $ B*M $ 4 2.8963 0.7241 2.27 0.068 0.707
    $ S*M $ 4 2.2108 0.5527 1.73 0.15 0.553
    $ B*S*M $ 8 5.493 0.6866 2.16 0.04* 0.875
    Error 81 25.8065 0.3186
    Total 107 40.6495
    R-sq R-sq(adj)
    0.7651 0.7106
     | Show Table
    DownLoad: CSV

    Table 10.  Three-way ANOVA with respect to $ D1_R $ metric for L = 40

    Three-way ANOVA: $ D1_R $ versus $ B $, $ S $, and $ M $ for L=40
    Source DF Adj SS Adj MS F-Value P-Value Partial eta squared
    $ B $ 2 0.8396 0.4198 1.25 0.292 0.21
    $ S $ 2 0.9187 0.4594 1.37 0.261 0.231
    $ M $ 2 1.4274 0.7137 2.12 0.126 0.343
    $ B*S $ 4 2.5902 0.6476 1.93 0.114 0.609
    $ B*M $ 4 1.0508 0.2627 0.78 0.541 0.259
    $ S*M $ 4 2.9402 0.7351 2.19 0.078 0.679
    $ B*S*M $ 8 5.4532 0.6817 2.03 0.053 0.769
    Error 81 27.2359 0.3362
    Total 107 42.4562
    R-sq R-sq(adj)
    0.8585 0.7526
     | Show Table
    DownLoad: CSV
  • [1] M. Al-BehadiliD. Ouelhadj and D. Jones, Multi-objective biased randomised iterated greedy for robust permutation flow shop scheduling problem under disturbances, Journal of the Operational Research Society, 71 (2020), 1847-1859.  doi: 10.1080/01605682.2019.1630330.
    [2] I. M. Alharkan, Algorithms for sequencing and scheduling, Industrial Engineering Department, King Saud University, Riyadh, Saudi Arabia, (2005).
    [3] N. Almasarwah and G. Süer, Flexible flowshop design in cellular manufacturing systems, Procedia Manufacturing, 39 (2019), 991-1001.  doi: 10.1016/j.promfg.2020.01.380.
    [4] S. F. AttarM. MohammadiR. Tavakkoli-Moghaddam and S. Yaghoubi, Solving a new multi-objective hybrid flexible flowshop problem with limited waiting times and machine-sequence-dependent set-up time constraints, International Journal of Computer Integrated Manufacturing, 27 (2014), 450-469.  doi: 10.1080/0951192X.2013.820348.
    [5] G. K. Badhotiya, A. Gurumurthy, Y. Marawar and G. Soni, Lean manufacturing in the last decade: Insights from published case studies, Journal of Manufacturing Technology Management, (2024). doi: 10.1108/JMTM-11-2021-0467.
    [6] J. Bautista-Valhondo, Exact and heuristic procedures for the Heijunka-flow shop scheduling problem with minimum makespan and job replicas, Progress in Artificial Intelligence, 10 (2021), 465-488.  doi: 10.1007/s13748-021-00249-z.
    [7] J. Behnamian and S. F. Ghomi, Hybrid flowshop scheduling with machine and resource-dependent processing times, Applied Mathematical Modelling, 35 (2011), 1107-1123.  doi: 10.1016/j.apm.2010.07.057.
    [8] D. Biskup and M. Feldmann, Lot streaming with variable sublots: An integer programming formulation, Journal of the Operational Research Society, 57 (2006), 296-303.  doi: 10.1057/palgrave.jors.2602016.
    [9] M. Boutbagha and L. El Abbadi, Heijunka-levelling customer orders: A systematic literature review, International Journal of Production Management and Engineering, 12 (2024), 31-41.  doi: 10.4995/ijpme.2024.19279.
    [10] C. CaoY. ZhangX. GuD. Li and J. Li, An improved gravitational search algorithm to the hybrid flowshop with unrelated parallel machines scheduling problem, International Journal of Production Research, 59 (2021), 5592-5608.  doi: 10.1080/00207543.2020.1788732.
    [11] S. ChenX. WangY. Wang and X. Gu, A modified adaptive switching-based many-objective evolutionary algorithm for distributed heterogeneous flowshop scheduling with lot-streaming, Swarm and Evolutionary Computation, 81 (2023), 101353.  doi: 10.1016/j.swevo.2023.101353.
    [12] T. L. ChenC. Y. Cheng and Y. H. Chou, Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming, Annals of Operations Research, 290 (2020), 813-836.  doi: 10.1007/s10479-018-2969-x.
    [13] M. Cheng and S. C. Sarin, Two-stage, multiple-lot, lot streaming problem for a 1+ 2 hybrid flow shop, IFAC Proceedings Volumes, 46 (2013), 448-453.  doi: 10.3182/20130619-3-RU-3018.00310.
    [14] C. A. C. Coello, Evolutionary Algorithms for Solving Multi-objective Problems, Springer, New York, 2007. doi: 10.1007/978-1-4757-5184-0.
    [15] W. CuiH. Sun and B. Xia, Integrating production scheduling, maintenance planning and energy controlling for the sustainable manufacturing systems under TOU tariff, Journal of the Operational Research Society, 71 (2020), 1760-1779.  doi: 10.1080/01605682.2019.1630327.
    [16] K. DebA. PratapS. Agarwal and T. A. M. T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ., IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.  doi: 10.1109/4235.996017.
    [17] F. M. Defersha and M. Chen, Mathematical model and parallel genetic algorithm for hybrid flexible flowshop lot streaming problem, International Journal of Advanced Manufacturing Technology, 62 (2012), 249-265.  doi: 10.1007/s00170-011-3798-0.
    [18] F. DugardinF. Yalaoui and L. Amodeo, New multi-objective method to solve reentrant hybrid flow shop scheduling problem, European Journal of Operational Research, 203 (2010), 22-31.  doi: 10.1016/j.ejor.2009.06.031.
    [19] O. Engin and A. Güçlü, A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems, Applied Soft Computing, 72 (2018), 166-176.  doi: 10.1016/j.asoc.2018.08.002.
    [20] H. Eskandari and A. Hosseinzadeh, A variable neighbourhood search for hybrid flow-shop scheduling problem with rework and set-up times, Journal of the Operational Research Society, 65 (2014), 1221-1231.  doi: 10.1057/jors.2013.70.
    [21] K. FangW. Luo and A. Che, Speed scaling in two-machine lot-streaming flow shops with consistent sublots, Journal of the Operational Research Society, 72 (2021), 2429-2441.  doi: 10.1080/01605682.2020.1796533.
    [22] A. Goli, Integration of blockchain-enabled closed-loop supply chain and robust product portfolio design, Computers and Industrial Engineering, 179 (2023), 109211.  doi: 10.1016/j.cie.2023.109211.
    [23] A. GoliA. Ala and M. Hajiaghaei-Keshteli, Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem, Expert Systems with Applications, 213 (2023), 119077.  doi: 10.1016/j.eswa.2022.119077.
    [24] A. GoliA. Ala and S. Mirjalili, A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty, Annals of Operations Research, 328 (2023), 493-530.  doi: 10.1007/s10479-022-04829-7.
    [25] A. GoliA. M. Golmohammadi and J. L. Verdegay, Two-echelon electric vehicle routing problem with a developed moth-flame meta-heuristic algorithm, Operations Management Research, 15 (2022), 891-912. 
    [26] A. Goli and E. B. Tirkolaee, Designing a portfolio-based closed-loop supply chain network for dairy products with a financial approach: Accelerated Benders decomposition algorithm, Computers and Operations Research, 155 (2023), 106244.  doi: 10.1016/j.cor.2023.106244.
    [27] J. H. Han and J. Y. Lee, Genetic algorithm-based approach for makespan minimization in a flow shop with queue time limits and skipping jobs, Advances in Production Engineering and Management, 18 (2023), 152-162.  doi: 10.14743/apem2023.2.463.
    [28] W. HanQ. DengG. GongL. Zhang and Q. Luo, Multi-objective evolutionary algorithms with heuristic decoding for hybrid flow shop scheduling problem with worker constraint, Expert Systems with Applications, 168 (2021), 114282.  doi: 10.1016/j.eswa.2020.114282.
    [29] H. S. Ketan and F. M. Yasir, Reducing of manufacturing lead time by implementation of lean manufacturing principles, Journal of Engineering, 21 (2015), 83-99. 
    [30] A. Khare and S. Agrawal, Scheduling hybrid flowshop with sequence-dependent setup times and due windows to minimize total weighted earliness and tardiness, Computers and Industrial Engineering, 135 (2019), 780-792.  doi: 10.1016/j.cie.2019.06.057.
    [31] R. Kolisch, Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation, European Journal of Operational Research, 90 (1996), 320-333.  doi: 10.1016/0377-2217(95)00357-6.
    [32] R. J. KuoE. EdbertF. E. Zulvia and S. H. Lu, Applying NSGA-Ⅱ to vehicle routing problem with drones considering makespan and carbon emission, Expert Systems with Applications, 221 (2023), 119777.  doi: 10.1016/j.eswa.2023.119777.
    [33] J. LiX. TaoB. JiaY. HanC. LiuP. DuanZ. Zheng and H. Sang, Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots, Swarm and Evolutionary Computation, 52 (2020), 100600.  doi: 10.1016/j.swevo.2019.100600.
    [34] Q. LiuH. ZhangJ. Leng and X. Chen, Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system, International Journal of Production Research, 57 (2019), 3903-3919.  doi: 10.1080/00207543.2018.1471243.
    [35] J. LongZ. ZhengX. Gao and P. M. Pardalos, A hybrid multi-objective evolutionary algorithm based on NSGA-Ⅱ for practical scheduling with release times in steel plants, Journal of the Operational Research Society, 67 (2016), 1184-1199.  doi: 10.1057/jors.2016.17.
    [36] C. LuL. GaoQ. PanX. Li and J. Zheng, A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution, Applied Soft Computing, 75 (2019), 728-749.  doi: 10.1016/j.asoc.2018.11.043.
    [37] C. LuY. HuangL. MengL. GaoB. Zhang and J. Zhou, A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers, Robotics and Computer-Integrated Manufacturing, 74 (2022), 102277.  doi: 10.1016/j.rcim.2021.102277.
    [38] C. LuQ. LiuB. Zhang and L. Yin, A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop, Expert Systems with Applications, 204 (2022), 117555.  doi: 10.1016/j.eswa.2022.117555.
    [39] R. Lundrigan, What is this thing called OPT?, Production and Inventory Management, 27 (1986), 2-11. 
    [40] M. K. MarichelvamM. Geetha and O. Tosun, An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors - A case study, Computers and Operations Research, 114 (2020), 104812.  doi: 10.1016/j.cor.2019.104812.
    [41] G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Applied Mathematics and Computation, 213 (2009), 455-465.  doi: 10.1016/j.amc.2009.03.037.
    [42] G. Mavrotas and K. Florios, An improved version of the augmented $\epsilon$-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems, Applied Mathematics and Computation, 219 (2013), 9652-9669.  doi: 10.1016/j.amc.2013.03.002.
    [43] L. MengK. GaoY. RenB. ZhangH. Sang and Z. Chaoyong, Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times, Swarm and Evolutionary Computation, 71 (2022), 101058.  doi: 10.1016/j.swevo.2022.101058.
    [44] L. MengC. ZhangX. ShaoY. Ren and C. Ren, Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines, International Journal of Production Research, 57 (2019), 1119-1145.  doi: 10.1080/00207543.2018.1501166.
    [45] J. Miltenburg, One-piece flow manufacturing on U-shaped production lines: a tutorial., IIE transactions, 33 (2021), 303-321.  doi: 10.1080/07408170108936831.
    [46] B. Mor and D. Shapira, Scheduling problems on a new setting of flexible flowshops: $\iota$-Machine proportionate flowshops, Journal of the Operational Research Society, 73 (2022), 1499-1516.  doi: 10.1080/01605682.2021.1915191.
    [47] T. NishiY. Hiranaka and M. Inuiguchi, Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness, Computers and Operations Research, 37 (2010), 189-198.  doi: 10.1016/j.cor.2009.04.008.
    [48] H. ÖztopM. F. TasgetirenD. T. Eliiyi and Q. K. Pan, Metaheuristic algorithms for the hybrid flowshop scheduling problem, Computers and Operations Research, 111 (2019), 177-196. 
    [49] Q. K. PanR. Ruiz and P. Alfaro-Fernández, Iterated search methods for earliness and tardiness minimization in hybrid flowshops with due windows, Computers and Operations Research, 80 (2017), 50-60. 
    [50] Q. K. PanL. WangJ. Q. Li and J. H. Duan, A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation, Omega, 45 (2014), 42-56.  doi: 10.1016/j.omega.2013.12.004.
    [51] T. PasupathyC. Rajendran and R. K. Suresh, A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs, The International Journal of Advanced Manufacturing Technology, 27 (2006), 804-815.  doi: 10.1007/s00170-004-2249-6.
    [52] D. RavindranS. J. SelvakumarR. Sivaraman and A. N. Haq, Flow shop scheduling with multiple objective of minimizing makespan and total flow time, The International Journal of Advanced Manufacturing Technology, 25 (2005), 1007-1012.  doi: 10.1007/s00170-003-1926-1.
    [53] M. S. ReddyC. RatnamG. Rajyalakshmi and V. K. Manupati, An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem, Measurement, 114 (2018), 78-90.  doi: 10.1016/j.measurement.2017.09.022.
    [54] S. Reiter, A system for managing job-shop production, The Journal of Business, 39 (1966), 371-393.  doi: 10.1086/294867.
    [55] R. RuizC. Maroto and J. Alcaraz, Two new robust genetic algorithms for the flowshop scheduling problem, Omega, 34 (2006), 461-476.  doi: 10.1016/j.omega.2004.12.006.
    [56] A. J. Ruiz-TorresG. Paletta and B. Adenso-Díaz, Hybrid two stage flowshop scheduling with secondary resources based on time buckets, International Journal of Production Research, 60 (2022), 1954-1972.  doi: 10.1080/00207543.2021.1880656.
    [57] W. ShaoZ. Shao and D. Pi, Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem, Expert Systems with Applications, 214 (2023), 119151.  doi: 10.1016/j.eswa.2022.119151.
    [58] L. Tang and H. Xuan, Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers, Journal of the Operational Research Society, 57 (2006), 316-324.  doi: 10.1057/palgrave.jors.2602033.
    [59] X. TaoQ. Pan and L. Gao, An efficient self-adaptive artificial bee colony algorithm for the distributed resource-constrained hybrid flowshop problem, Computers and Industrial Engineering, 169 (2022), 108200.  doi: 10.1016/j.cie.2022.108200.
    [60] A. T. ÜnalS. Aǧralıand and Z. C. Taşkın, A strong integer programming formulation for hybrid flowshop scheduling, Journal of the Operational Research Society, 71 (2020), 2042-2052.  doi: 10.1080/01605682.2019.1654414.
    [61] S. Wang and M. Liu, Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning, Journal of Manufacturing Systems, 37 (2015), 182-192.  doi: 10.1016/j.jmsy.2015.07.002.
    [62] S. Wang and H. Zhang, A matheuristic for flowshop scheduling with batch processing machines in textile manufacturing, Applied Soft Computing, 145 (2023), 110594.  doi: 10.1016/j.asoc.2023.110594.
    [63] Q. WeiY. WuY. Jiang and T. C. E. Cheng, Two-machine hybrid flowshop scheduling with identical jobs: Solution algorithms and analysis of hybrid benefits, Journal of the Operational Research Society, 70 (2019), 817-826.  doi: 10.1080/01605682.2018.1458018.
    [64] H. Xuan and B. Li, Scheduling dynamic hybrid flowshop with serial batching machines, Journal of the Operational Research Society, 64 (2013), 825-832.  doi: 10.1057/jors.2012.64.
    [65] Ö. F. Yılmaz, An integer programming model for disassembly system configuration, Sigma Journal of Engineering and Natural Sciences, 37 (2019), 813-825. 
    [66] Ö. F. Yılmaz, Operational strategies for seru production system: A bi-objective optimisation model and solution methods, International Journal of Production Research, 58 (2020), 3195-3219.  doi: 10.1080/00207543.2019.1669841.
    [67] Ö. F. Yılmaz and M. B. Durmuşoǧlu, Evolutionary algorithms for multi-objective scheduling in a hybrid manufacturing system, Handbook of Research on Applied Optimization Methodologies in Manufacturing Systems, IGI Global, 2018,162-187. doi: 10.4018/978-1-5225-2944-6.ch008.
    [68] Ö. F. Yılmaz and P. M. Pardalos, Minimizing average lead time for the coordinated scheduling problem in a two-stage supply chain with multiple customers and multiple manufacturers, Computers and Industrial Engineering, 114 (2017), 244-257.  doi: 10.1016/j.cie.2017.10.018.
    [69] B. G. Yılmaz and Ö. F. Yılmaz, Lot streaming in hybrid flowshop scheduling problem by considering equal and consistent sublots under machine capability and limited waiting time constraint, Computers and Industrial Engineering, 173 (2022), 108745.  doi: 10.1016/j.cie.2022.108745.
    [70] K. C. Ying, An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks, Journal of the Operational Research Society, 60 (2009), 810-817.  doi: 10.1057/palgrave.jors.2602625.
    [71] K. C. Ying and S. W. Lin, Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks, Expert systems with applications, 92 (2018), 132-141.  doi: 10.1016/j.eswa.2017.09.032.
    [72] Y. YuQ. K. PanX. Pang and X. Tang, An attribution feature-based memetic algorithm for hybrid flowshop scheduling problem with operation skipping, IEEE Transactions on Automation Science and Engineering, (2024), 1-16.  doi: 10.1109/TASE.2023.3346446.
    [73] B. ZhangQ. PanL. GaoX. Y. LiL. L. Meng and K. K. Peng, A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem, Computers and Industrial Engineering, 136 (2019), 325-344.  doi: 10.1016/j.cie.2019.07.036.
    [74] B. ZhangQ. PanL. MengC. LuJ. Mou and J. Li, An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots, Knowledge-Based Systems, 238 (2022), 107819.  doi: 10.1016/j.knosys.2021.107819.
    [75] B. ZhangQ. PanL. MengX. ZhangY. RenJ. Li and X. Jiang, A collaborative variable neighborhood descent algorithm for the hybrid flowshop scheduling problem with consistent sublots, Applied Soft Computing, 106 (2021), 107305.  doi: 10.1016/j.asoc.2021.107305.
    [76] B. ZhangQ. K. PanL. L. MengX. L. Zhang and X. C. Jiang, A decomposition-based multi-objective evolutionary algorithm for hybrid flowshop rescheduling problem with consistent sublots, International Journal of Production Research, 61 (2023), 1013-1038.  doi: 10.1080/00207543.2022.2093680.
    [77] W. ZhangC. LiM. GenW. Yang and G. Zhang, A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem, Expert Systems with Applications, 237 (2024), 121570.  doi: 10.1016/j.eswa.2023.121570.
    [78] Y. ZhuQ. TangL. ChengL. ZhaoG. Jiang and Y. Lu, Solving multi-objective hybrid flowshop lot-streaming scheduling with consistent and limited sub-lots via a knowledge-based memetic algorithm, Journal of Manufacturing Systems, 73 (2024), 106-125.  doi: 10.1016/j.jmsy.2024.01.006.
    [79] H. ZohaliB. NaderiM. Mohammadi and V. Roshanaei, Reformulation, linearization, and a hybrid iterated local search algorithm for economic lot-sizing and sequencing in hybrid flow shop problems, Computers and Operations Research, 104 (2019), 127-138.  doi: 10.1016/j.cor.2018.12.008.
  • 加载中

Figures(14)

Tables(10)

SHARE

Article Metrics

HTML views(858) PDF downloads(185) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return