\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Integration of pricing, sustainability and 3PL delivery time according to freshness date in a dual-channel fruit supply chain: A game theoretic approach

  • *Corresponding author: Mohammad Reza Gholamian

    *Corresponding author: Mohammad Reza Gholamian 
Abstract / Introduction Full Text(HTML) Figure(11) / Table(5) Related Papers Cited by
  • The perishable nature of agricultural products poses a significant challenge in the management of agricultural supply chains, necessitating the timely delivery of these products. The increasing global population has led to a greater demand for food supplies, prompting the need for sustainable supply chains that take into account environmental concerns and social responsibility. By examining various strategies, such as cooperation, the field of agricultural supply chain management can experience growth. This study investigates a three-level agricultural supply chain model, comprising the farmer, third-party logistics (3PL), and two retailers (online and offline sellers). The 3PL plays a crucial role in this supply chain by ensuring the delivery of fresh produce to customers before the expiration date, as well as implementing environmentally friendly packaging practices. Additionally, the farmer contributes to charitable causes through cash donations. To explore the relationships among the members of the supply chain, two approaches, namely Stackelberg and Nash equilibrium games, are employed. Consequently, two distinct supply chain strategies are developed and compared. In the first scenario, the two retailers cooperate as a single entity, whereas in the second scenario, the retailers compete against each other with the Nash equilibrium utilized to analyze their interactions. In both scenarios, the farmer assumes the role of the Stackelberg game leader, while the retailers act as the first followers, and the 3PL functions as the second follower. The findings of the analysis indicate that cooperation between the two retailers results in higher profits for both parties and the entire supply chain, whereas the profit levels of the farmer and 3PL are comparatively lower in the first scenario. This model can be applied to other case studies that consider these two scenarios as well.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Supply chain schematic

    Figure 2.  Game scenarios

    Figure 3.  Equilibrium values of profit functions in two scenarios

    Figure 4.  The effect of $ a_1 $ on Prices in CM scenario

    Figure 5.  The effect of $ a_1 $ on Prices in DM scenario

    Figure 6.  The effect of $ a_1 $ on profit functions in CM scenario

    Figure 7.  The effect of $ a_1 $ on profit functions in DM scenario

    Figure 8.  The effect of $ k $ on Delivery time

    Figure 9.  The effect of $ \lambda $ on Delivery time

    Figure 10.  The effect of $ h $ on quality of green packaging

    Figure 11.  The effect of $ \tau_1 $ on quality of green packaging

    Table 1.  Most important articles in literature

    Authors Demand dependency 3PL Freshness date Game
    Price Green CSR Delivery time
    Modak and Kelle [19] $ \ast $ $ \ast $ Stackelberg and Nash
    Raza [20] $ \ast $ Stackelberg
    Li et al. [13] $ \ast $ $ \ast $ Stackelberg and Nash
    Heydari et al. [8] $ \ast $ $ \ast $ Stackelberg
    Xu et al. [29] $ \ast $ Stackelberg
    He et al. [7] $ \ast $ $ \ast $ $ \ast $ Stackelberg
    Yang et al. [30] $ \ast $ $ \ast $ Stackelberg
    Wang et al. [26] $ \ast $ $ \ast $ Stackelberg and Nash
    Dabaghian et al. [3] $ \ast $ $ \ast $ Stackelberg
    Dingjun [9] $ \ast $ $ \ast $ Stackelberg
    This article $ \ast $ $ \ast $ $ \ast $ $ \ast $ $ \ast $ $ \ast $ Stackelberg and Nash
     | Show Table
    DownLoad: CSV

    Table 2.  Parameter values

    $ a_1 $ $ a_2 $ $ b $ $ q $ $ \tau_1 $ $ \tau_2 $ $ \gamma_1 $ $ \gamma_2 $
    2400 2000 2 1 0.8 0.7 0.4 0.3
    $ \mu $ $ h $ $ k $ $ m $ $ c $ $ w $ $ \phi $ $ \lambda $
    12 3 6 7 200 800 250 150
     | Show Table
    DownLoad: CSV

    Table 3.  Decision variables in both scenarios

    Non-cooperative scenario cooperative scenario
    $ p_1 $ 2462.01 3160.07
    $ p_2 $ 2338.19 3040.23
    $ l $ 1.33 1.33
    $ e $ 13.33 13.33
    $ x $ 249.975 249.975
     | Show Table
    DownLoad: CSV

    Table 4.  Values of profit functions

    Non-cooperative scenario cooperative scenario
    $ \pi_{r_1} $ 3987560 4494280
    $ \pi_{r_2} $ 3854160 4329660.61
    $ \pi_{r} $ 7841690 8821850
    $ \pi_{f} $ 1960280 1470210
    $ \pi_{3PL} $ 281735 212325
    $ \pi_{sc} $ 10083705 10504385
     | Show Table
    DownLoad: CSV

    Table 5.  The results on demand levels

    Non-cooperative scenario cooperative scenario
    $ D_1 $ 2824.01 2129.92
    $ D_2 $ 2776.39 2070.38
     | Show Table
    DownLoad: CSV
  • [1] P. Amorim and N. DeHoratius, Online shoppers don't always care about faster delivery, J. MIT Sloan Management Review, 63 (2021), 12-14. 
    [2] X. ChenL. Li and M. Zhou, Manufacturer's pricing strategy for supply chain with warranty period-dependent demand, J. Omega, 40 (2012), 807-816.  doi: 10.1016/j.omega.2011.12.010.
    [3] N. DabaghianR. Tavakkoli-MoghaddamA. A. Taleizadeh and M. S. Moshtagh, Channel coordination and profit distribution in a three-echelon supply chain considering social responsibility and product returns, J. Environment, Development and Sustainability, 24 (2022), 3165-3197.  doi: 10.1007/s10668-021-01564-0.
    [4] Y. DingX. GaoC. HuangJ. Shu and D. Yang, Service competition in an online duopoly market, J. Omega, 77 (2018), 58-72.  doi: 10.1016/j.omega.2017.05.007.
    [5] R. HammamiY. Frein and A. S. Albana, Delivery time quotation and pricing in two-stage supply chains: Centralized decision-making with global and local managerial approaches, European Journal of Operational Research, 286 (2020), 164-177.  doi: 10.1016/j.ejor.2020.03.006.
    [6] L.-H. HeY.-K. Leng and S.-N. Pan, Decisions of low carbon supply chain with corporate social responsibility and fairness concerns, International Journal of Operations and Quantitative Management, 27 (2022), 337-360.  doi: 10.46970/2021.27.4.3.
    [7] P. HeS. Zhang and C. He, Impacts of logistics resource sharing on B2C E-commerce companies and customers, Electronic Commerce Research and Applications, 34 (2019), 100820.  doi: 10.1016/j.elerap.2018.100820.
    [8] J. HeydariK. Govindan and Z. Basiri, Balancing price and green quality in presence of consumer environmental awareness: A green supply chain coordination approach, International Journal of Production Research, 59 (2021), 1957-1975.  doi: 10.1080/00207543.2020.1771457.
    [9] D. HongH. Fu and J. Fan, Research on corporate social responsibility and product quality in an outsourcing supply chain, J. Industrial and Management Optimization, 19 (2023), 2485-2506.  doi: 10.3934/jimo.2022052.
    [10] H. JafariS. R. Hejazi and M. Rasti-Barzoki, Sustainable development by waste recycling under a three-echelon supply chain: A game-theoretic approach, Journal of Cleaner Production, 142 (2017), 2252-2261.  doi: 10.1016/j.jclepro.2016.11.051.
    [11] J. Langley, Third party logistics study: The state of logistics outsourcing. [En línea] Third party logistics study: Annual study on the state of logistcs outsourcing, Pennsylvania, Estados Unidos de America, Lisa Terry, 40 (2013), 2252-2261. 
    [12] D. Lee, Who drives green innovation? A game theoretical analysis of a closed-loop supply chain under different power structures, International Journal of Environmental Research and Public Health, 17 (2020), 2274.  doi: 10.3390/ijerph17072274.
    [13] T. LiR. ZhangS. Zhao and B. Liu, Low carbon strategy analysis under revenue-sharing and cost-sharing contracts, Journal of Cleaner Production, 212 (2019), 1462-1477.  doi: 10.1016/j.jclepro.2018.11.282.
    [14] W. Li and J. Chen, Backward integration strategy in a retailer Stackelberg supply chain, Omega, 75 (2018), 118-130.  doi: 10.1016/j.omega.2017.03.002.
    [15] W. Li and J. Chen, A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns, Transportation Research Part E: Logistics and Transportation Review, 147 (2021), 102237.  doi: 10.1016/j.tre.2021.102237.
    [16] P. MaC. ZhangX. Hong and H. Xu, Pricing decisions for substitutable products with green manufacturing in a competitive supply chain, Journal of Cleaner Production, 183 (2018), 618-640.  doi: 10.1016/j.jclepro.2018.02.152.
    [17] A. Mahmoodi and K. Eshghi, Price competition in duopoly supply chains with stochastic demand, Journal of Manufacturing Systems, 33 (2014), 604-612.  doi: 10.1016/j.jmsy.2014.05.008.
    [18] N. M. Modak, Exploring Omni-channel supply chain under price and delivery time sensitive stochastic demand, Supply Chain Forum: An International Journal, 18 (2017), 218-230.  doi: 10.1080/16258312.2017.1380499.
    [19] N. M. Modak and P. Kelle, Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand, European Journal of Operational Research, 272 (2019), 147-161.  doi: 10.1016/j.ejor.2018.05.067.
    [20] S. A. Raza, Supply chain coordination under a revenue-sharing contract with corporate social responsibility and partial demand information, International Journal of Production Economics, 205 (2018), 1-14.  doi: 10.1016/j.ijpe.2018.08.023.
    [21] B. S. Sahay and R. Mohan, 3PL practices: An Indian perspective, International Journal of Physical Distribution & Logistics Management, 36 (2006), 666-689.  doi: 10.1108/09600030610710845.
    [22] M. Salman, E. Pek, E. Fereres and M. García-Vila, Policy guide to improve water productivity in small-scale agriculture: The case of Burkina Faso, Morocco and Uganda.
    [23] E. C. StephensA. D. Jones and D. Parsons, Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities, Agricultural Systems, 163 (2018), 1-6.  doi: 10.1016/j.agsy.2017.01.011.
    [24] M. SufiyanA. HaleemS. Khan and M. I. Khan, Evaluating food supply chain performance using hybrid fuzzy MCDM technique, Sustainable Production and Consumption, 20 (2019), 40-57.  doi: 10.1016/j.spc.2019.03.004.
    [25] Q. WangD. Zhao and L. He, Contracting emission reduction for supply chains considering market low-carbon preference, Journal of Cleaner Production, 120 (2016), 72-84.  doi: 10.1016/j.jclepro.2015.11.049.
    [26] W. WangY. ZhangW. ZhangG. Gao and H. Zhang, Incentive mechanisms in a green supply chain under demand uncertainty, Journal of Cleaner Production, 279 (2021), 123636.  doi: 10.1016/j.jclepro.2020.123636.
    [27] L. Xu and C. Wang, Contracting pricing and emission reduction for supply chain considering vertical technological spillovers, The International Journal of Advanced Manufacturing Technology, 93 (2017), 481-492.  doi: 10.1007/s00170-017-0116-5.
    [28] X. XuM. ZhangL. Chen and Y. Yu, The region-cap allocation and delivery time decision in the marketplace mode under the cap-and-trade regulation, International Journal of Production Economics, 247 (2022), 108407.  doi: 10.1016/j.ijpe.2021.108407.
    [29] X. XuM. Zhang and P. He, Coordination of a supply chain with online platform considering delivery time decision, Transportation Research Part E: Logistics and Transportation Review, 141 (2020), 101990.  doi: 10.1016/j.tre.2020.101990.
    [30] M. Yang and X.-M. Gong, Optimal decisions and Pareto improvement for green supply chain considering reciprocity and cost-sharing contract, Environmental Science and Pollution Research, 28 (2021), 29859-29874.  doi: 10.1007/s11356-021-12752-w.
  • 加载中

Figures(11)

Tables(5)

SHARE

Article Metrics

HTML views(913) PDF downloads(250) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return