\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asset-liability management under uncertain economic environment

  • *Corresponding author: Fuzhe Huang

    *Corresponding author: Fuzhe Huang
Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • This paper addresses an asset-liability management (ALM) framework for uncertain economic environments. By leveraging uncertainty theory and employing continuous-time uncertain differential equations driven by the Liu process to model asset and liability processes, we devise an optimal ALM strategy that achieves a balance between risky and risk-free investments. This strategy is formulated as an uncertain optimal control problem and solved analytically, yielding a closed-form solution. Our sensitivity analysis reveals that higher discount rates, interest rates, and stock appreciation rates encourage more risk-averse strategies, while higher liability appreciation rates lead to increased risk-taking under certain conditions. Additionally, greater risk aversion results in a preference for safer, low-risk investments, while lower risk aversion pushes companies toward more aggressive, high-risk assets.

    Mathematics Subject Classification: Primary: 90C70, 90B50; Secondary: 91G05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sensitivity of $ \pi^* $ and $ J $ to Discount Rate $ \delta $

    Figure 2.  Sensitivity of $ \pi^* $ and $ J $ to Risk-free rate $ r $

    Figure 3.  Sensitivity of $ \pi^* $ and $ J $ to Stock Appreciation Rate $ \mu $

    Figure 4.  Sensitivity of $ \pi^* $ and $ J $ to Liability Appreciation Rate $ \beta $

    Figure 5.  Sensitivity of $ \pi^* $ and $ J $ to Risk aversion $ \gamma $

  • [1] J. BlanchetL. Chen and X. Y. Zhou, Distributionally robust mean-variance portfolio selection with Wasserstein distances, Management Science, 68 (2022), 6382-6410.  doi: 10.1287/mnsc.2021.4155.
    [2] D. Chen, W. Yang and C. Wang, Optimal investment for asset-liability management with delay and partial information under Ornstein-Uhlenbeck process, Pacific-Basin Finance Journal, (2024), 102402. doi: 10.1016/j.pacfin.2024.102402.
    [3] P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.
    [4] X. ChenF. Huang and X. Li, Robust asset-liability management under CRRA utility criterion with regime switching: A continuous-time model, Stochastic Models, 38 (2022), 167-189.  doi: 10.1080/15326349.2021.1985520.
    [5] X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.
    [6] X. ChenQ. Liu and D. A. Ralescu, A bi-level optimization model for the asset-liability management of insurance companies, Journal of Industrial and Management Optimization, 19 (2023), 3003-3019.  doi: 10.3934/jimo.2022074.
    [7] X. ChenY. Liu and D. A. Ralescu, Uncertain stock model with periodic dividends, Fuzzy Optimization and Decision Making, 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.
    [8] K. C. Cheung and H. Yang, Asset allocation with regime-switching: Discrete-time case, Astin Bulletin, 34 (2004), 01, 99-111.
    [9] Y. FengB. Zhang and J. Peng, Mean-risk model for uncertain portfolio selection with background risk and realistic constraints, Journal of Industrial and Management Optimization, 19 (2023), 5467-5485.  doi: 10.3934/jimo.2022181.
    [10] B. Guo, F. Huang and K. Li, Time to build and bond risk premia, Journal of Economic Dynamics and Control, 121 (2020), 104024, 22 pp. doi: 10.1016/j.jedc.2020.104024.
    [11] X. HeK. Li and Y. Li, Asset allocation with time series momentum and reversal, Journal of Economic Dynamics and Control, 91 (2018), 441-457.  doi: 10.1016/j.jedc.2018.02.004.
    [12] X. Huang and T. Yang, How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk, Journal of Banking & Finance, 111 (2020), 105726. 
    [13] A. Keel and H. H. Müller, Efficient portfolios in the asset liability context, ASTIN Bulletin: The Journal of the IAA, 25 (1995), 33-48. 
    [14] D. LiY. Shen and Y. Zeng, Dynamic derivative-based investment strategy for mean-variance asset-liability management with stochastic volatility, Insurance: Mathematics and Economics, 78 (2018), 72-86.  doi: 10.1016/j.insmatheco.2017.11.006.
    [15] D. LiY. Zeng and H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scandinavian Actuarial Journal, 2018 (2018), 145-171.  doi: 10.1080/03461238.2017.1309679.
    [16] D. Li and W.-L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.
    [17] K. Li, Portfolio selection with inflation-linked bonds and indexation lags, Journal of Economic Dynamics and Control, 107 (2019), 103727, 17 pp. doi: 10.1016/j.jedc.2019.103727.
    [18] K. Li and J. Liu, Optimal dynamic momentum strategies, Operations Research, 70 (2022), 2054-2068.  doi: 10.1287/opre.2021.2254.
    [19] X. LiD. Zhao and X. Chen, Asset-liability management with state-dependent utility in the regime-switching market, Stochastic Models, 39 (2023), 566-591.  doi: 10.1080/15326349.2022.2138440.
    [20] W. Lio and R. Kang, Bayesian rule in the framework of uncertainty theory, Fuzzy Optimization and Decision Making, 22 (2023), 337-358.  doi: 10.1007/s10700-022-09395-y.
    [21] W. Lio and B. Liu, Residual and confidence interval for uncertain regression model with imprecise observations, Journal of Intelligent and Fuzzy Systems, 35 (2018), 2573-2583.  doi: 10.3233/JIFS-18353.
    [22] W. Lio and B. Liu, Uncertain maximum likelihood estimation with application to uncertain regression analysis, Soft Computing, 24 (2020), 9351-9360.  doi: 10.1007/s00500-020-04951-3.
    [23] W. Lio and B. Liu, Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China, Fuzzy Optimization and Decision Making, 20 (2021), 177-188.  doi: 10.1007/s10700-020-09337-6.
    [24] B. Liu, Uncertainty Theory, 2$^{nd}$ edition, Springer Berlin Heidelberg, 2007.
    [25] B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10. 
    [26] B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer Berlin Heidelberg, 2010.
    [27] B. Liu, Why is there a need for uncertainty theory, Journal of Uncertain Systems, 6 (2012), 3-10. 
    [28] Y. Liu and B. Liu, Residual analysis and parameter estimation of uncertain differential equations, Fuzzy Optimization and Decision Making, 21 (2022), 513-530.  doi: 10.1007/s10700-021-09379-4.
    [29] Y. Liu and Z. Qin, Moment estimation of uncertain autoregressive model and its application in financial market, Communications in Statistics-Simulation and Computation, (2024), 1-20. doi: 10.1080/03610918.2024.2378113.
    [30] H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.  doi: 10.1111/j.1540-6261.1952.tb01525.x.
    [31] R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, in Stochastic Optimization Models in Finance, (1975), 621-661.
    [32] W. F. Sharpe and L. G. Tint, Liabilities-A new approach, Journal of Portfolio Management, 16 (1990), 5-10.  doi: 10.3905/jpm.1990.409248.
    [33] Y. Shu and B. Li, Existence and uniqueness of solutions to uncertain fractional switched systems with an uncertain stock model, Chaos, Solitons & Fractals, 155 (2022), 111746. 
    [34] J. Wei and T. Wang, Time-consistent mean-variance asset-liability management with random coefficients, Insurance: Mathematics and Economics, 77 (2017), 84-96.  doi: 10.1016/j.insmatheco.2017.08.011.
    [35] Y. Zeng and Z. Li, Asset-liability management under benchmark and mean-variance criteria in a jump diffusion market, Journal of Systems Science and Complexity, 24 (2011), 317-327.  doi: 10.1007/s11424-011-9105-1.
    [36] Y. ZengZ. LiS. Zhu and H. Wu, Asset liability management based on CRRA utility criterion, Chinese Journal of Management Science, 22 (2014), 1-8. 
    [37] Y. ZhangY. WuS. Li and B. Wiwatanapataphee, Mean-variance asset liability management with state-dependent risk aversion, North American Actuarial Journal, 21 (2017), 87-106.  doi: 10.1080/10920277.2016.1247719.
    [38] D. Zhao and K. Li, Bounded rationality, adaptive behaviour, and asset prices, International Review of Financial Analysis, 80 (2022), 102037.  doi: 10.1016/j.irfa.2022.102037.
    [39] X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.
    [40] Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems: An International Journal, 41 (2010), 535-547.  doi: 10.1080/01969722.2010.511552.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(475) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return