\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Modeling the resilient supplier selection and optimal order Allocation considering the vehicle routing and disruption risk assessment based on the Bayesian network

  • *Corresponding author: Jafar Gheidar-Kheljani

    *Corresponding author: Jafar Gheidar-Kheljani 
Abstract / Introduction Full Text(HTML) Figure(21) / Table(12) Related Papers Cited by
  • This study develops a novel framework for designing resilient supply chain networks under uncertainty and disruption. The framework integrates supplier selection, order allocation, and vehicle routing, considering factors like supplier resilience, transportation costs, and demand variability. The Traveling Purchaser Problem (TPP) has been used to model the resilient supplier selection and determine the optimal order allocation. A key contribution is the incorporation of a Bayesian network to model the cascading effects of disruptions, enabling a more comprehensive understanding of supply chain risks. The proposed model also considers the impact of inflation on demand and the trade-off between cost and resilience. The findings indicate a positive correlation between the penalty for unmet demand and the level of customer service. This research has achieved a resilient supply chain and reduced overall costs by making informed decisions regarding supplier's proposed price, resilience cost, distance, and optimal supply route. Moreover, the proposed model offers a practical solution for supply chain managers facing unexpected disruptions. By utilizing linear programming, alternative suppliers or routes can be quickly identified in the event of natural disasters.

    The effectiveness of the model is demonstrated through a case study and sensitivity analysis, highlighting its potential to improve supply chain resilience and performance. The Fuzzy C-Means (FCM) clustering technique and Cross Impact Balance (CIB) Analysis are used for scenario reduction. This model makes manufacturers ready for better decision-making and planning when dealing with future risks and uncertainties.

    Mathematics Subject Classification: Primary: 90B06, 90C05, 90C11, 90Bxx, 90B05; Secondary: 90C29, 90C23, 90B50, 90-10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Searched word cloud

    Figure 2.  Famous authors of resilient supplier

    Figure 3.  Famous authors of traveling purchaser

    Figure 4.  Framework of study and implementation of the mathematical model

    Figure 5.  Structural model of risks in previous studies

    Figure 6.  Studied structural model

    Figure 7.  Minimum distance between suppliers

    Figure 8.  Probabilistic modeling of disruption occurring for a supplier under the effect of two disrupting incidents

    Figure 9.  Three final scenarios through ScenarioWizard

    Figure 10.  Normality tests of Iran's inflation rate

    Figure 11.  Approximate location of suppliers on Iran's Map

    Figure 12.  Optimal Pareto solutions for scenario 1

    Figure 13.  Optimal Pareto solutions for scenario 2

    Figure 14.  Optimal Pareto solutions for scenario 3

    Figure 15.  Service level for six problems in scenario 1

    Figure 16.  Service level for six problems in scenario 2

    Figure 17.  Total cost of three problems

    Figure 18.  Cost of penalty for not satisfying demand

    Figure 19.  Cost of penalty for not satisfying demand in each period

    Figure 20.  Total transportation cost

    Figure 21.  Transportation cost of each problem during the programming period

    Table 1.  Computation of disruption probability of supplier under the effect of two disruption incidents

    Network States $ P(H_1| u_i) $ $ P(u_i) $
    $ \mathrm{U}_1 = \{\sim e_1, \sim e_2\} $ $ \alpha_{H_1} = 10\% $ $ (1 - \alpha_1)(1 - \alpha2) = 0.81 $
    $ \mathrm{U}_2 = \{\sim e_1, e_2\} $ $ 1-(1-\alpha_{H_1})(1-\beta_{H_1 |e_2})=0.37 $ $ (1-\alpha_1)\alpha_2=0.09 $
    $ \mathrm{U}_3 = \{e_1, \sim e_2\} $ $ 1-(1-\alpha_{H_1})(1-\beta_{H_1 |e_1})=0.37 $ $ \alpha_1(1-\alpha_2)=0.09 $
    $ \mathrm{U}_4 = \{e_1, e_2\} $ $ 1-(1-\alpha_{H_1})(1-\beta_{H_1 |e_2})(1-\beta_{H_1 |e_1})=0.559 $ $ \alpha_1\alpha_2=.01 $
    $ F_{H_{1}} = \sum_{\forall u_{i}} P(H_1| u_i)P(u_i) \approx .15319 $
     | Show Table
    DownLoad: CSV

    Table 2.  Distance between nodes

    distance between nodes ($ m $)
    Supp No. Depot Rasht Ghazvin Esfehan kashan Tehran
    0 Depot 0 298000 130000 435000 240000 50000
    1 Rasht 298000 0 168000 733000 538000 278000
    2 Ghazvin 130000 168000 0 565000 370000 110000
    3 Esfehan 435000 733000 565000 0 195000 445000
    4 kashan 240000 538000 370000 195000 0 250000
    5 Tehran 50000 278000 110000 445000 250000 0
     | Show Table
    DownLoad: CSV

    Table 3.  Transportation cost

    $ tr(i, j) $ (Toman)
    Depot Rasht Ghazvin Esfehan kashan Tehran
    Depot 1490000 650000 2175000 1200000 250000
    Rasht 1490000 0 840000 3665000 2690000 1390000
    Ghazvin 650000 840000 0 2825000 1850000 550000
    Esfehan 2175000 3665000 2825000 0 975000 2225000
    kashan 1200000 2690000 1850000 975000 0 1250000
    Tehran 250000 1390000 550000 2225000 1250000 0
     | Show Table
    DownLoad: CSV

    Table 4.  Random generation of the data

    $ \varpi $ 100000 $ \nabla_{v} $ 3000000 $ \Theta_{v} $ 400
    $ \Gamma $ 700000 $ \theta_{j} $ 900000 $ \psi_{t} $ 100
    $ h_{t} $ 35000 $ \delta $ $ \mathrm{Uniform}[.1, .9] $ $ \phi_{i} $ $ 10^7 $
    $ \nu_{0} $ N(21.44, 1.726) $ \tau_{it}^{E} $ $ \mathrm{Uniform}[.7, .9] $ $ cap_{it} $ 620
     | Show Table
    DownLoad: CSV

    Table 5.  Pareto optimal solution associated with three scenarios

    S low medium high
    TC GS TC GS TC GS
    1 12613390074 4755000 12971790074 4755000 13330890074 4755000
    2 12608890074 4200000 12967290074 4200000 13326390074 4227000
    3 12608890074 3570000 12967290074 3635000 13326390075 4032000
    4 12608890074 3039000 12967290075 3327000 13326390074 2929000
    5 12607990075 2678000 12966390074 2418000 13325490075 2483000
    6 12607990074 1743000 12966390075 2223000 13325490074 1778000
     | Show Table
    DownLoad: CSV

    Table 6.  Service level in different scenarios

    Low Medium High
    t1 s1 0.20 t4 s1 0.20 t1 s1 0.20 t4 s1 0.20 t1 s1 0.19 t4 s1 0.19
    t1 s2 0.21 t4 s2 0.21 t1 s2 0.20 t4 s2 0.20 t1 s2 0.19 t4 s2 0.19
    t2 s1 0.61 t5 s1 0.87 t2 s1 0.59 t5 s1 0.84 t2 s1 0.57 t5 s1 0.82
    t2 s2 0.62 t5 s2 0.89 t2 s2 0.59 t5 s2 0.85 t2 s2 0.57 t5 s2 0.82
    t3 s1 0.28 t6 s1 0.61 t3 s1 0.27 t6 s1 0.59 t3 s1 0.26 t6 s1 0.57
    t3 s2 0.28 t6 s2 0.62 t3 s2 0.27 t6 s2 0.59 t3 s2 0.26 t6 s2 0.57
     | Show Table
    DownLoad: CSV

    Table 7.  Vehicle routing for medium scenario

    $ X_{ijvt}^s $
    i0 i1 v1 t2 s1 1 i1 i2 v1 t2 s1 1 i2 i0 v1 t2 s1 1
    i0 i1 v1 t3 s1 1 i1 i0 v1 t3 s1 1
    i0 i1 v2 t1 s1 1 i1 i2 v2 t1 s1 1 i2 i0 v2 t1 s1 1
    i0 i1 v2 t4 s1 1 i1 i2 v2 t4 s1 1 i2 i0 v2 t4 s1 1
    i0 i1 v2 t6 s1 1 i1 i0 v2 t6 s1 1
    i0 i2 v1 t6 s1 1 i2 i0 v1 t6 s1 1
    i0 i2 v2 t2 s1 1 i2 i0 v2 t2 s1 1
    i0 i2 v2 t5 s1 1 i2 i0 v2 t5 s1 1
    i0 i3 v1 t1 s1 1 i3 i0 v1 t1 s1 1
    i0 i3 v1 t4 s1 1 i3 i4 v1 t4 s1 1 i4 i0 v1 t4 s1 1
    i0 i3 v2 t3 s1 1 i3 i0 v2 t3 s1 1
    i0 i3 v3 t1 s1 1 i3 i0 v3 t1 s1 1
    i0 i3 v3 t2 s1 1 i3 i4 v3 t2 s1 1 i4 i0 v3 t2 s1 1
    i0 i3 v3 t3 s1 1 i3 i4 v3 t3 s1 1 i4 i0 v3 t3 s1 1
    i0 i3 v3 t4 s1 1 i3 i4 v3 t4 s1 1 i4 i0 v3 t4 s1 1
    i0 i3 v3 t5 s1 1 i3 i4 v3 t5 s1 1 i4 i0 v3 t5 s1 1
    i0 i3 v3 t6 s1 1 i3 i4 v3 t6 s1 1 i4 i0 v3 t6 s1 1
    i0 i4 v1 t5 s1 1 i4 i0 v1 t5 s1 1
     | Show Table
    DownLoad: CSV

    Table 8.  Service level based on the $\Gamma$ increase

    Prob.1 Prob.2 Prob.3 Prob.4 Prob.5 Prob.6
    $ \Gamma $ 50000 500000 1000000 2000000 2500000 3500000
    s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2
    t1 0.41 0.42 0.42 0.42 0.42 0.42 0.93 0.94 0.93 0.94 0.93 0.94
    t2 0.62 0.63 0.63 0.64 0.63 0.64 1 1 1 1 1 1
    t3 0.43 0.43 0.46 0.46 0.46 0.46 1 1 1 1 1 1
    t4 0.41 0.42 0.42 0.42 0.42 0.42 0.93 0.94 0.93 0.94 0.93 0.94
    t5 0.84 0.85 0.84 0.85 0.84 0.85 0.84 0.85 1 0.85 1 1
    t6 0.62 0.63 0.63 0.64 0.63 0.64 1 1 1 1 1 1
     | Show Table
    DownLoad: CSV

    Table 9.  Service level changing

    Prob.1 Prob.2 Prob.3 Prob.4 Prob.5 Prob.6
    Resilience Level(m) 35 35 35 60 65 70
     | Show Table
    DownLoad: CSV

    Table 10.  Objective functions and service levels for three new problems

    problem 1 problem 2 problem 3
    S TC s1 s2 S TC s1 s2 S TC s1 s2
    4755*$ 10^3 $ 190212*$ 10^5 $ 0.42 0.43 4755*$ 10^3 $ 190172*$ 10^5 $ 0.31 0.32 4755*$ 10^3 $ 190276*$ 10^5 $ 0.29 0.3
    0.42 0.43 0.63 0.64 0.33 0.34
    0.42 0.43 0.31 0.32 0.39 0.4
    0.42 0.43 0.63 0.64 0.46 0.47
    0.42 0.43 0.31 0.32 0.56 0.57
    0.42 0.43 0.63 0.64 0.72 0.73
    Total 2.52 2.58 Total 2.82 2.88 Total 2.75 2.81
     | Show Table
    DownLoad: CSV

    Table 11.  Comparison of costs before and after losing route

    Medium Medium-distruption
    Transportation cost Total cost Transportation cost Total cost
    120700000 1.306*$ 10^{10} $ 108300000 1.3111*$ 10^{10} $
     | Show Table
    DownLoad: CSV

    Table 12.  New routing after losing route of first supplier

    $ X^{s}_{ijvt} $
    i0 i2 v2 t1 s1 1 i2 i0 v2 t1 s1 1
    i0 i2 v2 t3 s1 1 i2 i0 v2 t3 s1 1
    i0 i2 v3 t2 s1 1 i2 i0 v3 t2 s1 1
    i0 i2 v3 t4 s1 1 i2 i0 v3 t4 s1 1
    i0 i2 v3 t5 s1 1 i2 i0 v3 t5 s1 1
    i0 i2 v3 t6 s1 1 i2 i0 v3 t6 s1 1
    i0 i3 v1 t1 s1 1 i3 i4 v1 t1 s1 1 i4 i0 v1 t1 s1 1
    i0 i3 v1 t2 s1 1 i3 i4 v1 t2 s1 1 i4 i0 v1 t2 s1 1
    i0 i3 v1 t3 s1 1 i3 i4 v1 t3 s1 1 i4 i0 v1 t3 s1 1
    i0 i3 v1 t4 s1 1 i3 i4 v1 t4 s1 1 i4 i0 v1 t4 s1 1
    i0 i3 v1 t5 s1 1 i3 i0 v1 t5 s1 1
    i0 i3 v2 t4 s1 1 i3 i4 v2 t4 s1 1 i4 i0 v2 t4 s1 1
    i0 i3 v2 t6 s1 1 i3 i4 v2 t6 s1 1 i4 i0 v2 t6 s1 1
    i0 i3 v3 t1 s1 1 i3 i4 v3 t1 s1 1 i4 i0 v3 t1 s1 1
    i0 i3 v3 t3 s1 1 i3 i4 v3 t3 s1 1 i4 i0 v3 t3 s1 1
    i0 i4 v1 t6 s1 1 i4 i0 v1 t6 s1 1
    i0 i4 v2 t2 s1 1 i4 i0 v2 t2 s1 1
    i0 i4 v2 t5 s1 1 i4 i0 v2 t5 s1 1
     | Show Table
    DownLoad: CSV
  • [1] N. AdabavazehM. Nikbakht and E. B. Tirkolaee, Identifying and prioritizing resilient health system units to tackle the COVID-19 pandemic, Socio-Economic Planning Sciences, 85 (2023), 101452. 
    [2] M. AmerT. U. Daim and A. Jetter, A review of scenario planning, Futures, 46 (2013), 23-40.  doi: 10.1016/j.futures.2012.10.003.
    [3] E. AngelelliM. VindigniM. GendreauR. Mansini and D. Manerb, The Traveling Purchaser Problem with time-dependent quantities, Computers and Operations Research, 82 (2017), 15-26. 
    [4] B. Bakhtiari Tavana, M. Rabieh, M. S. Pishvaee and M. Esmaeili, A stochastic mathematical programming approach to resilient supplier selection and order allocation problem: A case study in Iran Khodro supply chain, International Journal of Science and Technology, 30 (2021), pp. 1796-1821.
    [5] H. BeikiS. V. SeyedhosseiniV. PonkratovA. Olegovna Zekiy and S. A. Ivanov, Addressing a sustainable supplier selection and order allocation problem by an integrated approach: A case of automobile manufacturing, International Journal of Industrial and Production Engineering, 38 (2021), 239-253. 
    [6] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York, 1981.
    [7] N. BianchessiS. Irnich and C. Tilk, A branch-price-and-cut algorithm for the capacitated multiple vehicle traveling purchaser problem with unitary demand, Discrete Applied Mathematics, 288 (2021), 152-170. 
    [8] B. Bontoux and D. Feillet, Ant colony optimization for the traveling purchaser problem, Computers and Operations Research, 35 (2008), 628-637. 
    [9] W. N. CaballeroB. J. Lunday and F. Meissner, Regulating the rebound effect in the traveling purchaser problem, European Journal of Operational Research, 317 (2024), 660-677. 
    [10] A. CheaitouS. HamdanR. Larbi and I. Alsyouf, Sustainable traveling purchaser problem with speed optimization, International Journal of Sustainable Transportation, 15 (2021), 621-640. 
    [11] Z. ChenA. W. A. Hammad and M. Alyami, Building construction supply chain resilience under supply and demand uncertainties, Automation in Construction, 158 (2024), 105190. 
    [12] D. Cuellar-UsaquénC. Gomez and D. Álvarez-Martínez, A GRASP/path-relinking algorithm for the traveling purchaser problem, Int. Trans. Oper. Res., 30 (2023), 831-857. 
    [13] J. Feng and Z. Gong, Integrated linguistic entropy weight method and multi-objective programming model for supplier selection and order allocation in a circular economy: A case study, Journal of Cleaner Production, 277 (2020), 122597.  doi: 10.1016/j.jclepro.2020.122597.
    [14] Z. S. Hasanpour JesriK. EshghiM. Rafiee and T. V. Woensel, The multi-depot traveling purchaser problem with shared resources, Journal of Sustainability, 14 (2022), 10190. 
    [15] S. Hosseini and D. Ivanov, A new resilience measure for supply networks with the ripple effect considerations: A Bayesian network approach, Annals of Operations Research, 319 (2019), 581-607. 
    [16] S. HosseiniN. MorshedlouD. IvanovM. D. SarderK. Barker and A. A. Khaled, Resilient supplier selection and optimal order allocation under disruption risks, International Journal of Production Economics, 213 (2019), 124-137. 
    [17] H. Y. KangA. H. A. Lee and Y. F. Yeh, An optimization approach for traveling purchaser problem with environmental impact of transportation cost, International Journal of Cybernetics, Systems and Management Sciences, 50 (2021), 2289-2317. 
    [18] N. S. KashiL. Dirk and V. Oudheusden, A branch and bound algorithm for the traveling purchaser problem, European Journal of Operational Research, 97 (1997), 571-579. 
    [19] H. Kaur and S. P. Singh, Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies, International Journal of Production Economics, 231 (2021), 107830. 
    [20] F. Kellner and S. Utz, Sustainability in supplier selection and order allocation: Combining integer variables with Markowitz portfolio theory, Journal of Cleaner Production, 214 (2019), 462-474. 
    [21] S. KhoshfetratR. Rahiminezhad GalankashiM. S. Almasi and M. Mehrjardi, Sustainable supplier selection and order allocation: A fuzzy approach, Engineering Optimization, 52 (2020), 1494-1507. 
    [22] I. Kucukoglu, The traveling purchaser problem with fast service option, Computers and Operations Research, 141 (2022), 105700. 
    [23] J. LiS. Wang and T.-E. Cheng, Competition and cooperation in a single-retailer two supplier supply chain with supply disruption, International Journal of Production Economics, 124 (2010), 137-150. 
    [24] D. LiuZ. LC. He and C. Wang, Risk-averse co-decision for lower-carbon product family configuration and resilient supplier selection, Journal of Sustainability, 14 (2021), 384. 
    [25] R. Lotfi, M. Changizi, P. MohajerAnsari, A. Hosseini, Z. Javaheri and S. S. Ali, A robust, resilience machine learning with risk approach: A case study of gas consumption, Annals of Operations Research, 2024.
    [26] R. Lotfi, A. Gharehbaghi, M. S. Mehrjardi, K. Kheiri and S. S. Ali, A robust, resilience multi-criteria decision-making with risk approach: A case study for renewable energy location, Environmental Science and Pollution Research, 30 (2023), 15, 43267-43278.
    [27] R. Lotfi, A. Gholamrezaei, M. Kadłubek, M. Afshar, S. S. Ali and K. Kheiri, A robust and resilience machine learning for forecasting agri-food production, Scientific Reports, 12 (2022). doi: 10.1038/s41598-022-26449-8.
    [28] R. Lotfi, A. Khanbaba, H. A. Alkhazaleh, M. Changizi, M. Kadłubek, S. Aghakhani and S. SamarAli, A viable supplier selection with order allocation by considering robustness, risk-averse and blockchain technology, Computers and Industrial Engineering, (2024), 110319.
    [29] R. Lotfi, H. Hazrati, S. S. Ali, S. M. Sharifmousavi, A. Khanbaba and M. Amra, Antifragile, sustainable and agile healthcare waste chain network design by considering blockchain, resiliency, robustness, and risk, Central European Journal of Operations Research, 2023.
    [30] R. LotfiN. MardaniS. S. AliS. M. Pahlevan and S. M. R. Davoodi, A robust and risk-averse medical waste chain network design by considering viability requirements, RAIRO - Operations Research, 58 (2024), 1473-1497.  doi: 10.1051/ro/2024013.
    [31] R. LotfiP. MohajerAnsariM. M. S. NevisiM. AfsharS. M. R. Davoodi and S. S. Ali, A viable supply chain by considering vendor-managed-inventory with a consignment stock policy and learning approach, Results in Engineering, 21 (2023), 101609. 
    [32] R. Lotfi, A. M. Nasrabadi, S. S. Ali, N. Mardani, S. M. R. Davoodi and S. Aghakhani, A viable relief supply chain network design by considering risk and robustness for disaster and crisis management, Central European Journal of Operations Research, 2024.
    [33] R. LotfiZ. SheikhiM. AmraM. AliBakhshi and G. Weber, Robust optimization of risk-aware, resilient and sustainable closed-loop supply chain network design with Lagrange relaxation and fix-and-optimize, International Journal of Logistics Research and Applications, 27 (2021), 705-745. 
    [34] R. LotfiM. VaseeiS. S. AliS. M. R. DavoodiM. Bazregar and S. Sadeghi, Budget allocation problem for projects with considering risks, robustness, resiliency, and sustainability requirements, Results in Engineering, 24 (2024), 102828.  doi: 10.1016/j.rineng.2024.102828.
    [35] Q. LuY. Jiang and Y. Wang, The effects of supply chain governance on supply chain resilience based on information processing theory, Industrial Management and Data Systems, 124 (2024), 291-318. 
    [36] R. MansiniN. Bianchessi and M. G. Speranza, The distance constrained multiple vehicle traveling purchaser problem, Computers and Operations Research, 82 (2014), 15-26. 
    [37] R. MansiniD. Maner and J. Riera-Ledesma, The traveling purchaser problem and its variants, European Journal of Operational Research, 259 (2017), 1-18. 
    [38] R. Mansini and B. Tocchella, The traveling purchaser problem with budget constraint, Computers and Operations Research, 36 (2009), 2263-2274. 
    [39] S. I. MariM. S. MemonM. B. RamzanS. M. Qureshi and M. W. Iqbal, Interactive fuzzy multi-criteria decision-making approach for supplier selection and order allocation in a resilient supply chain, International Journal of Mathematics, 7 (2019), 137. 
    [40] A. MohammedI. Harris and K. Govindan, A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation, International Journal of Production Economics, 217 (2019), 171-184. 
    [41] A. MohammedI. HarrisA. SorokaM. NaimT. Ramjaun and M. Yazdani, Resilient supplier assessment and order allocation planning, Annals of Operational Research, 296 (2021), 335-362. 
    [42] A. ModaresN. Motahari Farimani and F. Dehghanian, A new vendor-managed inventory four-tier model based on reducing environmental impacts and optimal supplier selection under uncertainty, Journal of Industrial and Management Optimization, 20 (2024), 188-220. 
    [43] S. Nazari-ShirkouhiM. TavakoliK. Govindan and S. Mousakhani, A hybrid approach using Z-number DEA model and artificial neural network for resilient supplier selection, Expert Systems with Applications, 222 (2023), 119746. 
    [44] A. RezaeiA. Aghsami and M. Rabbani, Supplier selection and order allocation model with disruption and environmental risks in centralized supply chain, International Journal of System Assurance Engineering and Management, 12 (2021), 1036-1072. 
    [45] A. RezaeiM. Rahiminezhad GalankashiS. Mansoorzadeh and F. Mokhatab Rafiei, Supplier selection and order allocation with lean manufacturing criteria: An integrated MCDM and bi-objective modelling approach, Engineering Management Journal, 32 (2020), 253-271. 
    [46] S. RezaeiI. GhalehkhondabiM. Rafiee and S. Namdar Zanganeh, Supplier selection and order allocation in CLSC configuration with various supply strategies under disruption risk, Operational Research Society of India, 57 (2020), 908-934. 
    [47] S. M. TaghaviV. GhezavatiH. Mohammadi Bidhandi and S. M. J. Mirzapour Al-e-Hashem, Green resilient supplier selection and order allocation under disruption by utilizing conditional value at risk: Mixed response strategies, Process Integration and Optimization for Sustainability, 7 (2023), 359-380.  doi: 10.1007/s41660-022-00298-4.
    [48] A. Teeninga and A. Volgenant, Improved heuristics for the traveling purchaser problem, Computers and Operations Research, 31 (2004), 139-150. 
    [49] E. B. TirkolaeeA. E. TorkayeshM. TavanaA. GoliV. Simic and W. Ding, An integrated decision support framework for resilient vaccine supply chain network design, Engineering Applications of Artificial Intelligence, 126 (2023), 106945. 
    [50] S. A. TorabiM. M. Baghersad and S. A. Mansouri, Resilient supplier selection and order allocation under operational and disruption risks, Transportation Research Part E, 79 (2015), 22-48. 
    [51] S. V. ParkouhiA. Safaei Ghadikolaei and H. Fallah Lajim, Resilient supplier selection and segmentation in grey environment, Journal of Cleaner Production, 207 (2019), 1123-1137. 
    [52] F. SabouhiM. S. Pishvaee and M. S. Jabalameli, Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain, Computers and Industrial Engineering, 126 (2018), 657-672. 
    [53] A. Sepehri, E. B. Tirkolaee, V. Simic and S. S. Ali, Designing a reliable-sustainable supply chain network: Adaptive m-objective $\varepsilon$-constraint method, Annals of Operations Research, 2024.
    [54] Y. ShaoD. Barnes and and C. Wu, Sustainable supplier selection and order allocation for multinational enterprises considering supply disruption in COVID-19 era, Australian Journal of Management, 1 (2022), 1-39. 
    [55] M. Umar and M. M. J. Wilson, Inherent and adaptive resilience of logistics operations in food supply chains, Journal of Business Logistics, 45 (2024), e12362.
    [56] M. XiaoJ. Zhang and W. Lin, Parameterized algorithms and complexity for the traveling purchaser problem and its variants, Journal of Combinatorial Optimization, 44 (2022), 2269-2285. 
    [57] P. ZhaoS. Ji and Y. Xue, An integrated approach based on the decision-theoretic rough set for resilient-sustainable supplier selection and order allocation, International Journal of Cybernetics, Systems and Management Sciences, 52 (2021), 774-808. 
  • 加载中

Figures(21)

Tables(12)

SHARE

Article Metrics

HTML views(1292) PDF downloads(210) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return