[1]
|
S. Bahmani, B. Raj and P. T. Boufounos, Greedy sparsity-constrained optimization, Journal of Machine Learning Research, 14 (2013), 807-841.
|
[2]
|
J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141.
|
[3]
|
A. Beck and N. Hallak, Optimization problems involving group sparsity terms, Mathematical Programming, 178 (2019), 39-67.
doi: 10.1007/s10107-018-1277-1.
|
[4]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[5]
|
D. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.
|
[6]
|
S. Bi, X. Liu and S. Pan, Exact penalty decomposition method for zero-norm minimization based on mpec formulation, SIAM Journal on Scientific Computing, 36 (2014), A1451-A1477.
doi: 10.1137/110855867.
|
[7]
|
T. Blumensath and M. E. Davies, Iterative thresholding for sparse approximations, Journal of Fourier Analysis and Applications, 14 (2008), 629-654.
doi: 10.1007/s00041-008-9035-z.
|
[8]
|
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146 (2014), 459-494.
doi: 10.1007/s10107-013-0701-9.
|
[9]
|
X. Chen, D. Ge, Z. Wang and Y. Ye, Complexity of unconstrained $l_2$-$l_p$ minimization, Mathematical Programming, 143 (2014), 371-383.
doi: 10.1007/s10107-012-0613-0.
|
[10]
|
Z. Dong and W. Zhu, Homotopy methods based on $l_0$-norm for compressed sensing, IEEE Transactions on Neural Networks and Learning Systems, 29 (2017), 1132-1146.
doi: 10.1109/TNNLS.2017.2658953.
|
[11]
|
D. Dua and C. Graff, UCI machine learning repository, University of California, Irvine, School of Information and Computer Sciences, (2019).
|
[12]
|
J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96 (2001), 1348-1360.
doi: 10.1198/016214501753382273.
|
[13]
|
J. Gotoh, A. Takeda and K. Tono, Dc formulations and algorithms for sparse optimization problems, Mathematical Programming, 169 (2018), 141-176.
doi: 10.1007/s10107-017-1181-0.
|
[14]
|
I. Guyon, S. Gunn, A. Ben-Hur and G. Dror, Result analysis of the nips 2003 feature selection challenge, Advances in Neural Information Processing Systems, 17 (2005), 545-552.
|
[15]
|
E. T. Hale, W. Yin and Y. Zhang, Fixed-point continuation for $l_1$-minimization: Methodology and convergence, SIAM Journal on Optimization, 19 (2008), 1107-1130.
doi: 10.1137/070698920.
|
[16]
|
Y. Jiao, B. Jin and X. Lu, A primal dual active set with continuation algorithm for the $l_0$-regularized optimization problem, Applied and Computational Harmonic Analysis, 39 (2015), 400-426.
doi: 10.1016/j.acha.2014.10.001.
|
[17]
|
Y. Jiao, B. Jin and X. Lu, Group sparse recovery via the $l^0(l^2)$ penalty: Theory and algorithm, IEEE Transactions on Signal Processing, 65 (2016), 998-1012.
doi: 10.1109/TSP.2016.2630028.
|
[18]
|
H. Li and Z. Lin, Accelerated proximal gradient methods for nonconvex programming, Advances in Neural Information Processing Systems, 28 (2015), 379-387.
|
[19]
|
X. Li, D. Sun and K.-C. Toh, A highly efficient semismooth newton augmented lagrangian method for solving lasso problems, SIAM Journal on Optimization, 28 (2018), 433-458.
doi: 10.1137/16M1097572.
|
[20]
|
Z. Lu and X. Li, Sparse recovery via partial regularization: Models, theory, and algorithms, Mathematics of Operations Research, 43 (2018), 1290-1316.
doi: 10.1287/moor.2017.0905.
|
[21]
|
Z. Lu and Y. Zhang, Sparse approximation via penalty decomposition methods, SIAM Journal on Optimization, 23 (2013), 2448-2478.
doi: 10.1137/100808071.
|
[22]
|
B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.
doi: 10.1137/S0097539792240406.
|
[23]
|
Y. E. Nesterov, A method for solving the convex programming problem with convergence rate $\text{O} (1/k^{2})$, Dokl. Akad. Nauk SSSR, 269 (1983), 543-547.
|
[24]
|
Y. E. Nesterov, Gradient methods for minimizing composite functions, Mathematical Programming, 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5.
|
[25]
|
L. Pan and X. Chen, Group sparse optimization for images recovery using capped folded concave functions, SIAM Journal on Imaging Sciences, 14 (2021), 1-25.
doi: 10.1137/19M1304799.
|
[26]
|
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss., 317. Springer-Verlag, Berlin, 1998.
|
[27]
|
E. Soubies, L. Blanc-Féraud and G. Aubert, A continuous exact $l_0$ penalty $(\text{CEL0})$ for least squares regularized problem, SIAM Journal on Imaging Sciences, 8 (2015), 1607-1639.
doi: 10.1137/151003714.
|
[28]
|
P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Mathematical Programming, 117 (2009), 387-423.
doi: 10.1007/s10107-007-0170-0.
|
[29]
|
Z. Wen, W. Yin, D. Goldfarb and Y. Zhang, A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation, SIAM Journal on Scientific Computing, 32 (2010), 1832-1857.
doi: 10.1137/090747695.
|
[30]
|
L. Xiao and T. Zhang, A proximal-gradient homotopy method for the sparse least-squares problem, SIAM Journal on Optimization, 23 (2013), 1062-1091.
doi: 10.1137/120869997.
|
[31]
|
Z. Xu, X. Chang, F. Xu and H. Zhang, $l_ {1/2}$ regularization: A thresholding representation theory and a fast solver, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027.
doi: 10.1109/TNNLS.2012.2197412.
|
[32]
|
J. Yang and Y. Zhang, Alternating direction algorithms for $l_1$-problems in compressive sensing, SIAM Journal on Scientific Computing, 33 (2011), 250-278.
doi: 10.1137/090777761.
|
[33]
|
C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38 (2010), 894-942.
doi: 10.1214/09-AOS729.
|
[34]
|
T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, Journal of Machine Learning Research, 11 (2010), 1081-1107.
|
[35]
|
S. Zhou, N. Xiu and H.-D. Qi, Global and quadratic convergence of newton hard-thresholding pursuit, Journal of Machine Learning Research, 22 (2021), 1-45.
|
[36]
|
W. Zhu, H. Huang, L. Jiang and J. Chen, Weighted thresholding homotopy method for sparsity constrained optimization, Journal of Combinatorial Optimization, 44 (2022), 1924-1952.
doi: 10.1007/s10878-020-00563-7.
|
[37]
|
W. Zhu, Z. Huang, J. Chen and Z. Peng, Iteratively weighted thresholding homotopy method for the sparse solution of underdetermined linear equations, Science China Mathematics, 64 (2021), 639-664.
doi: 10.1007/s11425-018-9467-7.
|