\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Research on impact of dual credit policy on service mode in new energy vehicle supply chain

  • *Corresponding author: Peng Li

    *Corresponding author: Peng Li

The first author is supported by the National Science Basic Research Plan in Shaanxi Province of China under Grant No. 2024JC-YBQN-0759, Project of Shaanxi Social Science Foundation under Grant No.2023D017, Project of Humanities and Social Sciences of the Ministry of Education of China under Grant No. 24YJC630109.

Abstract / Introduction Full Text(HTML) Figure(6) / Table(5) Related Papers Cited by
  • Under the dual credit policy, the new energy vehicle industry is faced with the multi-decision collaborative optimization problem of service level, R&D level and pricing under different service modes. This paper aims at the supply chain structure composed of a new energy vehicle manufacturer and a battery manufacturer, and respectively constructs decision models under three service modes: the new energy vehicle manufacturer providing service, the battery manufacturer providing service, and jointly providing service. On the basis of solving the model by using Stackelberg game theory, numerical analysis is used to put forward management suggestions. The results show that under the joint providing service mode, both enterprises can obtain the highest profit, followed by the mode of the new energy manufacturer providing service, while the profits of both enterprises are the lowest under the mode of the battery manufacturer providing service. The government departments should actively increase the credit price under the policy.

    Mathematics Subject Classification: 91A80.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Supply chain structure studied in this paper

    Figure 2.  Effects of $ p_{0} $ on decisions under M1 mode

    Figure 3.  Effects of $ p_{0} $ on decisions under M2 mode

    Figure 4.  Effects of $ p_{0} $ on decisions under M3 mode

    Figure 5.  Effects of $ p_{0} $ on $ \pi_{1} $

    Figure 6.  Effects of $ p_{0} $ on $ \pi_{0} $

    Table 1.  Notations used in the models

    Notation Explanation Notation Explanation
    $ w $ battery price $ s_1 $ service level of the new energy vehicle manufacturer
    $ p_1 $ new energy vehicle price $ s_2 $ service level of the battery manufacturer
    $ p_0 $ credit price $ \pi_0 $ profit of the battery manufacturer profit of the new energy vehicle manufacturer
    $ e $ R&D level $ \pi_1 $ mensitivity factor of R&D level impacting new energy credits
    $ i $ sensitivity factor of new energy vehicle price impacting sales $ k $ sensitivity factor of service level impacting new energy vehicle sales
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal decisions and profits under different service modes

    The new energy vehicle manufacturer providing service The battery manufacturer providing service Two enterprises jointly providing service
    $ p_{1} $ $ \frac{\left[\begin{array}{l}k^2 u\left(h i w \beta p_0+w i^2 \beta^2 p_0^2-2 v-6 i v w\right)\\+2 u^2 i\left(4 v+h^2 w+4 i v w-w i^2 \beta^2 p_0^2\right)+k^4 v w\end{array}\right]}{v\left(k^2-4 i u\right)^2} $ $ \frac{\left[k^2 v w+u\left(4 v+h^2 w+4 i v w-w i^2 \beta^2 p_0^2\right)\right]}{8 i v u} $ $ \frac{\left[\begin{array}{l}k^2 u\left(h i w \beta p_0+w i^2 \beta^2 p_0^2-2 v-8 i v w\right)+\\2 i u^2\left(4 v+h^2 w+4 i v w-w i^2 \beta^2 p_0^2\right)+2 k^4 v w\end{array}\right]}{v\left(k^2-4 i u\right)^2} $
    $ e $ $ -i w u\left(h+i \beta p_{0}\right) / v\left(k^{2}-4 i u\right) $ $ w\left(h+i \beta p_{0}\right) / 4 v $ $ -i w u\left(h+i \beta p_{0}\right) / v\left(k^{2}-4 i u\right) $
    $ s_{1} $ $ \frac{\left[\begin{array}{l}k^3 v(i w-1)+i k u(4 v-4 i v w)\\+i k u\left(2 h i w \beta p_0+w i^2 \beta^2 p_0^2+h^2 w\right)\end{array}\right]}{v\left(k^2-4 i u\right)^2} $ / $ \frac{\left[\begin{array}{l}2 i k u^2\left(4 v+h^2 w-4 i v w\right)-2 k^3 v u\\+2 i k u^2\left(2 h i w \beta p_0+w i^2 \beta^2 p_0^2\right)+k^5 v w\end{array}\right]}{2 v u\left(k^2-4 i u\right)^2} $
    $ s_{2} $ / $ k w / 4 u $ $ -k w\left(k^{2}-2 i u\right) / 2 u\left(k^{2}-4 i u\right) $
    $ p_{1} $} $ -\frac{u\left[\begin{array}{l}k^2 v(1-i w)+i u\left(4 v+h^2 w-4 i v w\right)\\+i u\left(2 h i w \beta p_0+w i^2 \beta^2 p_0^2\right)\end{array}\right]^2}{v^2\left(k^2-4 i u\right)^3} $ $ \frac{\left[k^2 v w+u\left(4 v+h^2 w-4 i v w+2 h i w \beta p_0+w i^2 \beta^2 p_0^2\right)\right]^2}{64 i v^2 u^2} $ $ -\frac{\left[\begin{array}{l}2 i u^2\left(4 v+h^2 w-4 i v w\right)+k^4 v w\\+2 i u^2\left(2 h i w \beta p_0+w i^2 \beta^2 p_0^2\right)-2 k^2 v u\end{array}\right]}{4 v^2 u\left(k^2-4 i u\right)^3} $
    $ \pi_{0} $ $ \frac{i w u\left[\begin{array}{l}2 k^2 v(i w-1)+i u(8 v-8 i v w)\\+i u\left(2 h i w \beta p_0+w i^2 \beta^2 p_0^2+h^2 w\right)\end{array}\right]^2}{v\left(k^2-4 i u\right)^2} $ $ \frac{w\left[k^2 v w+u\left(8 v+h^2 w-8 i v w+2 h i w \beta p_0+w i^2 \beta^2 p_0^2\right)\right]^2}{16 v u} $ $ \frac{w\left[\begin{array}{l}4 i v k^2 u^2(3 i w-2)+k^6 v w-4 i k^4 v w u\\+4 i^2 u^3\left(8 v+h^2 w-8 i v w+2 h i w \beta p_0+w i^2 \beta^2 p_0^2\right)\end{array}\right]^2}{4 v u\left(k^2-4 i u\right)^2} $
     | Show Table
    DownLoad: CSV

    Table 3.  Effects of $ {p}_{{0}} $ on decisions and profits under M1 mode

    $ p_{0} $ $ p_{1}^{*} $ $ e^{*} $ $ s_{1}^{*} $ $ \pi_{1}^{*} $ $ \pi_{0}^{*} $
    0.05 1.1285 0.1006 0.5866 0.3854 0.3249
    0.10 1.1647 0.1097 0.6167 0.4259 0.3345
    0.15 1.2032 0.1189 0.6493 0.4722 0.3449
    0.20 1.2441 0.1280 0.6846 0.5249 0.3562
    0.25 1.2874 0.1371 0.7224 0.5846 0.3683
    0.30 1.3329 0.1463 0.7629 0.6519 0.3813
    0.35 1.3809 0.1554 0.8060 0.7276 0.3951
     | Show Table
    DownLoad: CSV

    Table 4.  Effects of $ {p}_{0} $ on decisions and profits under M2 mode

    $ p_{0} $ $ p_{1}^{*} $ $ e^{*} $ $ s_{2}^{*} $ $ \pi_{1}^{*} $ $ \pi_{0}^{*} $
    0.05 0.4380 0.0220 0.0625 0.1154 0.0780
    0.10 0.4377 0.0240 0.0625 0.1176 0.0785
    0.15 0.4372 0.0260 0.0625 0.1201 0.0790
    0.20 0.4365 0.0280 0.0625 0.1227 0.0795
    0.25 0.4356 0.0300 0.0625 0.1256 0.0801
    0.30 0.4345 0.0320 0.0625 0.1288 0.0807
    0.35 0.4332 0.0340 0.0625 0.1321 0.0814
     | Show Table
    DownLoad: CSV

    Table 5.  Effects of $ {p}_{0} $ on decisions and profits under M3 mode

    $ p_{0} $ $ p_{1}^{*} $ $ e^{*} $ $ s_{1}^{*} $ $ s_{2}^{*} $ $ \pi_{1}^{*} $ $ \pi_{0}^{*} $
    0.05 2.0469 0.1006 1.1606 0.1607 1.5086 0.4282
    0.10 2.0831 0.1097 1.1906 0.1607 1.5877 0.4378
    0.15 2.1216 0.1189 1.2233 0.1607 1.6760 0.4482
    0.20 2.1625 0.1280 1.2586 0.1607 1.7740 0.4595
    0.25 2.2057 0.1371 1.2964 0.1607 1.8824 0.4716
    0.30 2.2513 0.1463 1.3369 0.1607 2.0018 0.4846
    0.35 2.2992 0.1554 1.3800 0.1607 2.1330 0.4984
     | Show Table
    DownLoad: CSV
  • [1] J. Chen, X. Huang, Y. Cao, et al., Electric vehicle charging schedule considering shared charging pile based on generalized Nash game, International Journal of Electrical Power & Energy Systems, 136 (2022), 107579.
    [2] X. Chen, J. Luo, X. Wang, et al., Supply chain risk management considering put options and service level constraints, Computers & Industrial Engineering, 140 (2020), 106228.
    [3] Y. Cheng and T. Fan, Production coopetition strategies for an FV automaker and a competitive NEV automaker under the dual-credit policy, Omega, 103 (2021), 102391.  doi: 10.1016/j.omega.2020.102391.
    [4] Y. DuY. Zhao and H. Li, Subsidy policy and carbon quota mechanism of the Chinese vehicle industry, Transportation Research Part D: Transport and Environment, 121 (2023), 103806.  doi: 10.1016/j.trd.2023.103806.
    [5] H. Gong and T. Hansen, The rise of China's new energy vehicle lithium-ion battery industry: The coevolution of battery technological innovation systems and policies, Environmental Innovation and Societal Transitions, 46 (2023), 100689.  doi: 10.1016/j.eist.2022.100689.
    [6] H. He, S. Li, S. Wang, et al., Electrification decisions of traditional automakers under the dual-credit policy regime, Transportation Research Part D: Transport and Environment, 98 (2021), 102956. doi: 10.1016/j.trd.2021.102956.
    [7] H. He, S. Li, S. Wang, et al., Electrification decisions of traditional automakers under the dual-credit policy regime, Transportation Research Part D: Transport and Environment, 98 (2021), 102956. doi: 10.1016/j.trd.2021.102956.
    [8] S. Hu, Z. Liu, Y. Tan, et al., The status quo and future trends of new energy vehicle power batteries in China-analysis from policy perspective, Energy Reports, 8 (2022), 63-80. doi: 10.1016/j.egyr.2022.09.082.
    [9] W. A. JauhariN. S. Kamila and P. W. Laksono, A coordination model for closed-loop supply chain systems with a single manufacturer and retailer, Supply Chain Analytics, 4 (2023), 100051.  doi: 10.1016/j.sca.2023.100051.
    [10] Y. Kittaka and C. Pan, The bright side of outside market entry with manufacturer encroachment, Transportation Research Part E: Logistics and Transportation Review, 180 (2023), 103358.  doi: 10.1016/j.tre.2023.103358.
    [11] B. Liu, C. Song, X. Liang, et al., Regional differences in China's electric vehicle sales forecasting: Under supply-demand policy scenarios, Energy Policy, 177 (2023), 113554. doi: 10.1016/j.enpol.2023.113554.
    [12] Q. LiuX. Wen and Q. Cao, Multi-objective development path evolution of new energy vehicle policy driven by big data: From the perspective of economic-ecological-social, Applied Energy, 341 (2023), 121065.  doi: 10.1016/j.apenergy.2023.121065.
    [13] A. P. P. Maruthasalam and G. Balasubramanian, Supplier encroachment in the presence of asymmetric retail competition, International Journal of Production Economics, 264 (2023), 108961.  doi: 10.1016/j.ijpe.2023.108961.
    [14] Y. Mao, P. Li and Y. Li, Exploring the promotion of green technology innovation in the new energy vehicle industry: An evolutionary game analysis, Environmental Science and Pollution Research, (2023), 1-17.
    [15] T. Merfeld and S. Meisel, Economic real-time energy trading service for electric vehicles with uncertain mobility demand, Journal of Cleaner Production, 340 (2022), 130639.  doi: 10.1016/j.jclepro.2022.130639.
    [16] R. MishraR. K. Singh and N. P. Rana, Developing environmental collaboration among supply chain partners for sustainable consumption & production: Insights from an auto sector supply chain, Journal of Cleaner Production, 338 (2022), 130619. 
    [17] N. Mu, Y. Wang, Z. S. Chen, et al., Multi-objective combinatorial optimization analysis of the recycling of retired new energy electric vehicle power batteries in a sustainable dynamic reverse logistics network, Environmental Science and Pollution Research, 30 (2023), 47580-47601. doi: 10.1007/s11356-023-25573-w.
    [18] L. PeiH. Kong and Y. Xu, Government subsidies, dual-credit policy, and enterprise performance: Empirical evidence from Chinese listed new energy vehicle companies, Chinese Journal of Population, Resources and Environment, 21 (2023), 71-81.  doi: 10.1016/j.cjpre.2023.06.004.
    [19] S. QuL. Shu and J. Yao, Optimal pricing and service level in supply chain considering misreport behavior and fairness concern, Computers & Industrial Engineering, 174 (2022), 108759. 
    [20] F. Ren and B. Hu, Decisions and coordination in low-carbon supply chains with a wholesale price constraint under government subsidies, International Journal of Production Economics, 277 (2024), 109407.  doi: 10.1016/j.ijpe.2024.109407.
    [21] B. Sarkar and S. Bhuniya, A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand, Expert Systems with Applications, 202 (2022), 117154.  doi: 10.1016/j.eswa.2022.117154.
    [22] Z. Shi and J. Cheng, How do government subsidies and consumers' low-carbon preference promote new energy vehicle diffusion? A tripartite evolutionary game based on energy vehicle manufacturers, the government and consumers, Heliyon, (2023).
    [23] Y. Tao, J. Qiu, S. Lai, et al., Data-driven on-demand energy supplement planning for electric vehicles considering multi-charging/swapping service, Applied Energy, 311 (2022), 118632. doi: 10.1016/j.apenergy.2022.118632.
    [24] Y. Wang, R. Fan, D. Wang, et al., Impact of the dual-credit policy on electric vehicle diffusion considering information transmission, Transportation Research Part D: Transport and Environment, 121 (2023), 103852. doi: 10.1016/j.trd.2023.103852.
    [25] Y. Wang and Z. Liao, Functional industrial policy mechanism under natural resource conflict: A case study on the Chinese new energy vehicle industry, Resources Policy, 81 (2023), 103417.  doi: 10.1016/j.resourpol.2023.103417.
    [26] Y. P. Xie, R. J. Chen and J. R. Cheng, How can new-energy vehicle companies use organizational resilience to build business ecological advantages? The role of ecological niche and resource orchestration, Journal of Cleaner Production, (2023), 137765. doi: 10.1016/j.jclepro.2023.137765.
    [27] Z. XuY. Li and F. Li, Electric vehicle supply chain under dual-credit and subsidy policies: Technology innovation, infrastructure construction and coordination, Energy Policy, 195 (2024), 114339.  doi: 10.1016/j.enpol.2024.114339.
    [28] S. Xu, W. Yang, K. Govindan, et al., A new coopetitive mode in a sustainable supply chain: Energy performance contracting and supplier encroachment, Journal of Cleaner Production, 450 (2024), 141795. doi: 10.1016/j.jclepro.2024.141795.
    [29] D. Yang, J. Meng, L. Yang, et al., Dual-Credit policy of new energy automobile at China: Inhibiting scale or intermediary of innovation?, Energy Strategy Reviews, 43 (2022), 100932. doi: 10.1016/j.esr.2022.100932.
    [30] H. YuY. Li and W. Wang, Optimal innovation strategies of automakers with market competition under the dual-credit policy, Energy, 283 (2023), 128403.  doi: 10.1016/j.energy.2023.128403.
    [31] H. YuY. Li and W. Wang, Optimal innovation strategies of automakers with market competition under the dual-credit policy, Energy, 283 (2023), 128403.  doi: 10.1016/j.energy.2023.128403.
    [32] X. Zhang and X. Bai, Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010-2020 in China, Renewable and Sustainable Energy Reviews, 70 (2017), 24-43.  doi: 10.1016/j.rser.2016.11.211.
    [33] C. Zhu and J. Ma, Dynamic strategies of horizontal low-carbon supply chains under double carbon policies: A bounded rationality perspective, Computers & Industrial Engineering, 181 (2023), 109309. 
  • 加载中

Figures(6)

Tables(5)

SHARE

Article Metrics

HTML views(547) PDF downloads(116) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return