No | Method | Number of Trial | Average MAPE |
1 | Repetitive trials | 8 | 28.58225 % |
2 | An average of path generating | 3 | 30, 50744 % |
3 | Point optimization | 3 | 9, 987356667 % |
4 | Data separation | 3 | 17, 08581833 % |
5 | A piecewise path | 3 | 2, 540766667 % |
The COVID-19 pandemic has significantly impacted various sectors, including industries. Companies have struggled with operational risks while striving to optimize their cash flows. To address the financial challenges posed by the pandemic, we propose a novel cash flow model that aims to determine the optimal profit for a company. This model operates based on two distinct states or regimes: mothballing (temporary suspension of operations) and reactivating conditions. The regime-switching is determined by the number of infected employees in the company which is estimated based on the stochastic SIRD model. Leveraging insights from the stochastic SIRD model, we employ a grey wolf optimizer to estimate key parameters in the stochastic SIRD and subsequently the cash flow model. In conclusion, our approach allows us to estimate the optimal timing for implementing mothballing or reactivating strategies accurately, taking into account the number of infected employees. By doing so, companies can make informed decisions to maximize profit while safeguarding employee well-being.
Citation: |
Table 1. MAPE of some methods improving the grey wolf optimizer
No | Method | Number of Trial | Average MAPE |
1 | Repetitive trials | 8 | 28.58225 % |
2 | An average of path generating | 3 | 30, 50744 % |
3 | Point optimization | 3 | 9, 987356667 % |
4 | Data separation | 3 | 17, 08581833 % |
5 | A piecewise path | 3 | 2, 540766667 % |
Table 2. Parameters estimation of the stochactic SIRD model using the point optimization method
No | Bounds | Parameter value |
1 | $ S_0 $ | 1, 402, 564 |
2 | $ a $ | 0.05174 |
3 | $ r $ | 0.02259 |
4 | $ \kappa $ | 0.00117 |
5 | $ \eta $ | $ 1.35\times 10^{-6} $ |
6 | $ \sigma_1 $ | 0.00028 |
7 | $ \sigma_2 $ | 0.13321 |
8 | $ \sigma_3 $ | 0.06669 |
9 | $ \sigma_4 $ | 0.005 |
10 | $ \sigma_5 $ | 0.07198 |
Table 3. Cash flow model parameters
$ H $ | $ VC $ | $ FC $ | $ E $ | $ \rho $ | $ M $ | $ A $ |
$ 42.000 $ | $ 14.000 $ | $ 7.000.000 $ | $ 14.000 $ | $ 0.05 $ | $ 4.200.000 $ | $ 4.200.000 $ |
Table 4. Comparison of the expected discounted cash flow
No | $ V $ | Employee productivity rate $ \xi $ | ||
$ \xi=0 $ | $ \xi=0.2 $ | $ \xi=0.5 $ | ||
1 | $ V_{no-rs} $ | 408, 100, 495.980802 | 411, 387, 580.676322 | 417, 957, 373.160371 |
2 | $ V_{with-rs} $ | 437, 373, 960.8549 | 440, 827, 318. 187527 | 446, 813, 557.30296 |
Table 5. The transition probability of the regime-switching scheme for different productivity level
No | Bounds | Employee productivity rate $ \xi $ | ||
$ \xi=0 $ | $ \xi=0.2 $ | $ \xi=0.5 $ | ||
1 | $ p_{11} $ | 0.99690 | 0.99687 | 0.99691 |
2 | $ p_{12} $ | 0.00310 | 0.00313 | 0.00309 |
3 | $ p_{21} $ | 0.09091 | 0.06667 | 0.10000 |
4 | $ p_{22} $ | 0.90909 | 0.93333 | 0.90000 |
5 | $ p_{1} $ | 0.96707 | 0.95509 | 0.97006 |
6 | $ p_{2} $ | 0.03293 | 0.04491 | 0.02994 |
Table 6.
Comparison of the upper bound (
No | Bounds | Employee productivity rate $ \xi $ | ||
$ \xi=0 $ | $ \xi=0.2 $ | $ \xi=0.5 $ | ||
1 | $ I_H $ | 36 | 28 | 32 |
2 | $ I_L $ | 10 | 9 | 10 |
[1] |
S. A. Alanazi, M. Kamruzzaman, M. Alruwaili, N. Alshammari, S. A. Alqahtani and A. Karime, Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care, Journal of Healthcare Engineering, 2020.
doi: 10.1155/2020/8857346.![]() ![]() |
[2] |
H. Alsakaji, F. A. Rihan and A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800.
doi: 10.1155/2022/4247800.![]() ![]() |
[3] |
A. Atkeson, What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios, Technical report, National Bureau of Economic Research, 2020.
![]() |
[4] |
T. Britton, Stochastic epidemic models: A survey, Mathematical Biosciences, 225 (2010), 24-35.
doi: 10.1016/j.mbs.2010.01.006.![]() ![]() ![]() |
[5] |
G. C. Calafiore, C. Novara and C. Possieri, A time-varying SIRD model for the COVID-19 contagion in Italy, Annual Reviews in Control, 50 (2020), 361-372.
![]() ![]() |
[6] |
H. Chen and S. H. Cox, An option-based operational risk management model for pandemics, North American Actuarial Journal, 13 (2009), 54-76.
doi: 10.1080/10920277.2009.10597540.![]() ![]() ![]() |
[7] |
I. Cooper, A. Mondal and C. G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities, Chaos, Solitons & Fractals, 139 (2020), 110057.
![]() |
[8] |
N. Donthu and A. Gustafsson, Effects of COVID-19 on business and research, Journal of Business Research, 117 (2020), 284-289.
doi: 10.1016/j.jbusres.2020.06.008.![]() ![]() |
[9] |
D. Fanelli and F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos, Solitons & Fractals, 134 (2020), 109761.
![]() ![]() |
[10] |
W. G. Faris, The SIR model of an epidemic, arXiv preprint, arXiv: 2104.12029.
![]() |
[11] |
B. K. Grace, Black-Scholes option pricing via genetic algorithms, Applied Economics Letters, 7 (2000), 129-132.
doi: 10.1080/135048500351960.![]() ![]() |
[12] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM Journal on Applied Mathematics, 71 (2011), 876-902.
doi: 10.1137/10081856X.![]() ![]() ![]() |
[13] |
S. Gunay, A new form of financial contagion: COVID-19 and stock market responses, Available at SSRN 3584243.
![]() |
[14] |
H. Gupta, S. Kumar, D. Yadav, O. P. Verma, T. K. Sharma, C. W. Ahn and J.-H. Lee, Data analytics and mathematical modeling for simulating the dynamics of COVID-19 epidemic—a case study of India, Electronics, 10 (2021), 127.
doi: 10.3390/electronics10020127.![]() ![]() |
[15] |
S. Hussain, E. N. Madi, H. Khan and M. S. Abdo, A numerical and analytical study of a stochastic epidemic SIR model in the light of white noise, Advances in Mathematical Physics, 2022 (2022), 1638571.
doi: 10.1155/2022/1638571.![]() ![]() ![]() |
[16] |
R. M. A. Ikram, A. A. Dehrashid, B. Zhang, Z. Chen, B. N. Le and H. Moayedi, A novel swarm intelligence: Cuckoo optimization algorithm (COA) and sail fish optimizer (SFO) in landslide susceptibility assessment, Stochastic Environmental Research and Risk Assessment, 37 (2023), 1717-1743.
doi: 10.1007/s00477-022-02361-5.![]() ![]() |
[17] |
J. R. Koza, W. Banzhaf, K. Chellapilla, D. Kalyanmoy, M. Dorigo, D. B. Fogel, M. Garzon, D. Goldberg, H. Iba and R. Riolo, Genetic programming 1998, Proceedings of the Third Annual Conference.
![]() |
[18] |
N. A. Kudryashov, M. A. Chmykhov and M. Vigdorowitsch, Analytical features of the SIR model and their applications to COVID-19, Applied Mathematical Modelling, 90 (2021), 466-473.
doi: 10.1016/j.apm.2020.08.057.![]() ![]() ![]() |
[19] |
N. Kumar, H. Kumar, K. Kumar, A study for plausible third wave of COVID-19 in India through fuzzy time series modelling based on particle swarm optimization and fuzzy c-means, Mathematical Problems in Engineering, 2022.
doi: 10.1155/2022/5878268.![]() ![]() |
[20] |
S. Kumar, G. Chadha, R. K. Thulasiram and P. Thulasiraman, Ant colony optimization to price exotic options, in 2009 IEEE Congress on Evolutionary Computation, IEEE, (2009), 2366-2373.
![]() |
[21] |
A. Miao, T. Zhang, J. Zhang and C. Wang, Dynamics of a stochastic SIR model with both horizontal and vertical transmission, J. Appl. Anal. Comput., 8 (2018), 1108-1121.
doi: 10.11948/2018.1108.![]() ![]() ![]() |
[22] |
S. Mirjalili, S. M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software, 69 (2014), 46-61.
doi: 10.1016/j.advengsoft.2013.12.007.![]() ![]() |
[23] |
C. Muro, R. Escobedo, L. Spector and R. Coppinger, Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations, Behavioural Processes, 88 (2011), 192-197.
doi: 10.1016/j.beproc.2011.09.006.![]() ![]() |
[24] |
E. R. Putri, M. Iqbal, M. L. Shahab, H. N. Fadhilah, I. Mukhlash, D. K. Arif, E. Apriliani and H. Susanto, COVID-19 outbreak prediction in Indonesia based on machine learning and SIRD-based hybrid methods, Nonlinear Dynamics and Systems Theory, 21 (2021), 495-509.
![]() ![]() |
[25] |
F. A. Rihan, H. J. Alsakaji and C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Advances in Difference Equations, 2020 (2020), Paper No. 502, 20 pp.
doi: 10.1186/s13662-020-02964-8.![]() ![]() ![]() |
[26] |
V. Sadovnichiy, A. Akaev, A. Zvyagintsev and A. Sarygulov, Mathematical modeling of overcoming the COVID-19 pandemic and restoring economic growth, in Doklady Mathematics, Springer, 106 (2022), 230-235.
doi: 10.1134/S1064562422040160.![]() ![]() |
[27] |
A. Salehan and A. Deldari, Corona virus optimization (CVO): A novel optimization algorithm inspired from the Corona virus pandemic, The Journal of Supercomputing, 78 (2022), 5712-5743.
doi: 10.1007/s11227-021-04100-z.![]() ![]() |
[28] |
A. Salehan and B. Javadi, Collaborative gold mining algorithm: An optimization algorithm based on the natural gold mining process, Electronics, 11 (2022), 3824.
doi: 10.3390/electronics11223824.![]() ![]() |
[29] |
H. Susanto, V. R. Tjahjono, M. Hasan, M. F. Kasihm, N. Nuraini, E. R. Putri, R. Kusdiantara and H. Kurniawan, How many can you infect? Simple (and naive) methods of estimating the reproduction number, Journal of Applied Science and Engineering, 24 (2021), 900-914.
![]() |
[30] |
V. R. Tjahjono, H. Kurniawan, A. Hakam, E. R. Putri, H. Susanto, et al., Epidemic modeling
of COVID-19 in the ASEAN countries using a genetic partial fitting algorithm with the
presence of a second wave, Journal of Applied Science and Engineering, 24 (2021), 900-914.
![]() |
[31] |
V. A. N. Valencia, Y. Díaz, J. M. Pascale, M. F. Boni and J. E. Sanchez-Galan, Using compartmental models and Particle Swarm Optimization to assess Dengue basic reproduction number R0 for the Republic of Panama in the 1999-2022 period, Heliyon, 9.
![]() |
[32] |
J.-S. Wang and S.-X. Li, An improved grey wolf optimizer based on differential evolution and elimination mechanism, Scientific Reports, 9 (2019), 7181.
doi: 10.1038/s41598-019-43546-3.![]() ![]() |
[33] |
R. Wongsathan, The logistic growth regression model with the genetic algorithm for predicting the third wave of the COVID-19 epidemic in Thailand, Asia-Pacific Journal of Science and Technology, 28 (2023), APST-28.
![]() |
[34] |
Y. Zhou, W. Zhang and S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Applied Mathematics and Computation, 244 (2014), 118-131.
doi: 10.1016/j.amc.2014.06.100.![]() ![]() ![]() |
The SIRD compartment diagram with external influence
A social hierarchy of the best fitness values
Prediction of infected individuals of COVID-19 using the point estimation approach
Prediction of infected individuals of COVID-19 using the piecewise path approach
Projection of 100 paths of infected individuals with regime-switching for employee productivity
Projection of 100 paths of infected individuals with regime-switching for employee productivity
Projection of 100 paths of infected individuals with regime-switching for employee productivity
Regime-switching diagram for for employee productivity
Regime-switching diagram for for employee productivity
Regime-switching diagram for for employee productivity