April  2007, 1(2): 205-253. doi: 10.3934/jmd.2007.1.205

Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form

1. 

Department of Mathematics, Rutgers University, Camden NJ 08102, United States

2. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, United States

Received  May 2006 Published  January 2007

If $T=\{T_t\}_{t\in\mathbb R}$ is an aperiodic measure-preserving jointly continuous flow on a compact metric space $\Omega$ endowed with a Borel probability measure $m$, and $G$ is a compact Lie group with Lie algebra $L$, then to each continuous map $A: \Omega \to L$ associate the solution $\Omega\times\mathbb R$ ∋ $(\omega,t)\mapsto X^A(\omega,t)\in G$ of the family of time-dependent initial-value problems $X'(t) = A(T_t\omega)X(t)$, $X(0) =$ identity, $X(t) \in G$ for $\omega\in \Omega$. The corresponding skew-product flow $T^A=\{T_t^A\}_{t\in\mathbb R}$ on $G\times\Omega$ is then defined by letting $T^A_t(g,\omega ) = (X^A(\omega ,t)g,T_t\omega)$ for $(g,\omega)\in G\times\Omega$, $t\in\mathbb R$. The flow $T^A$ is measure-preserving on $(G\times \Omega,\nu_{_G}\otimes m)$ (where $\nu_{_G}$ is normalized Haar measure on $G$) and jointly continuous. For a given closed convex subset $S$ of $L$, we study the set $C_{erg}(\Omega ,S)$ of all continuous maps $A: \Omega\to S$ for which the flow $T^A$ is ergodic. We develop a new technique to determine a necessary and sufficient condition for the set $C_{erg}(\Omega ,S)$ to be residual. Since the dimension of $S$ can be much smaller than that of $L$, our result proves that ergodicity is typical even within very "thin'' classes of cocycles. This covers a number of differential equations arising in mathematical physics, and in particular applies to the widely studied example of the Rabi oscillator.
Citation: Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205
[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[3]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[5]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[6]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[7]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[18]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[19]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[20]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

2019 Impact Factor: 0.465

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]