-
Previous Article
Spectral invariants in Lagrangian Floer theory
- JMD Home
- This Issue
-
Next Article
Partial hyperbolicity and ergodicity in dimension three
Algebraically periodic translation surfaces
1. | Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, United States |
2. | Department of Mathematics, Cornell University, Ithaca, NY 14853, United States |
[1] |
Patrick Foulon, Boris Hasselblatt. Lipschitz continuous invariant forms for algebraic Anosov systems. Journal of Modern Dynamics, 2010, 4 (3) : 571-584. doi: 10.3934/jmd.2010.4.571 |
[2] |
Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94. |
[3] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[4] |
Amol Sasane. Algebraic characterization of autonomy and controllability of behaviours of spatially invariant systems. Mathematical Control and Related Fields, 2014, 4 (1) : 115-124. doi: 10.3934/mcrf.2014.4.115 |
[5] |
V. Afraimovich, T.R. Young. Multipliers of homoclinic orbits on surfaces and characteristics of associated invariant sets. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 691-704. doi: 10.3934/dcds.2000.6.691 |
[6] |
Lianpeng Yang, Xiong Li. Existence of periodically invariant tori on resonant surfaces for twist mappings. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1389-1409. doi: 10.3934/dcds.2020081 |
[7] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
[8] |
Pascal Hubert, Gabriela Schmithüsen. Infinite translation surfaces with infinitely generated Veech groups. Journal of Modern Dynamics, 2010, 4 (4) : 715-732. doi: 10.3934/jmd.2010.4.715 |
[9] |
David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477 |
[10] |
Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34 |
[11] |
Eugene Gutkin. Insecure configurations in lattice translation surfaces, with applications to polygonal billiards. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 367-382. doi: 10.3934/dcds.2006.16.367 |
[12] |
Artur Avila, Carlos Matheus, Jean-Christophe Yoccoz. The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces. Journal of Modern Dynamics, 2019, 14: 21-54. doi: 10.3934/jmd.2019002 |
[13] |
B. Harbourne, P. Pokora, H. Tutaj-Gasińska. On integral Zariski decompositions of pseudoeffective divisors on algebraic surfaces. Electronic Research Announcements, 2015, 22: 103-108. doi: 10.3934/era.2015.22.103 |
[14] |
Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139 |
[15] |
Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069 |
[16] |
Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271-296. doi: 10.3934/jgm.2012.4.271 |
[17] |
Jean-Michel Morel, Guoshen Yu. Is SIFT scale invariant?. Inverse Problems and Imaging, 2011, 5 (1) : 115-136. doi: 10.3934/ipi.2011.5.115 |
[18] |
Michael Hutchings. Mean action and the Calabi invariant. Journal of Modern Dynamics, 2016, 10: 511-539. doi: 10.3934/jmd.2016.10.511 |
[19] |
Marx Chhay, Aziz Hamdouni. On the accuracy of invariant numerical schemes. Communications on Pure and Applied Analysis, 2011, 10 (2) : 761-783. doi: 10.3934/cpaa.2011.10.761 |
[20] |
Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]