- Previous Article
- JMD Home
- This Issue
-
Next Article
Ergodic properties of isoperimetric domains in spheres
$C^1$-generic conservative diffeomorphisms have trivial centralizer
1. | Université de Bourgogne, Laboratoire de Topologie, UMR 5584 du CNRS, BP 47 870, 21078 Dijon Cedex |
2. | CNRS - Laboratoire Analyse, Géométrie et Applications UMR 7539, Institut Galilée, Université Paris 13, 99 Avenue J.-B. Clément, 934390 Villetaneuse, France |
3. | Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730, United States |
[1] |
Christian Bonatti, Sylvain Crovisier and Amie Wilkinson. The centralizer of a $C^1$-generic diffeomorphism is trivial. Electronic Research Announcements, 2008, 15: 33-43. doi: 10.3934/era.2008.15.33 |
[2] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4943-4957. doi: 10.3934/dcds.2021063 |
[3] |
Raquel Ribeiro. Hyperbolicity and types of shadowing for $C^1$ generic vector fields. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2963-2982. doi: 10.3934/dcds.2014.34.2963 |
[4] |
Katsutoshi Shinohara. On the index problem of $C^1$-generic wild homoclinic classes in dimension three. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 913-940. doi: 10.3934/dcds.2011.31.913 |
[5] |
Rafael Ortega. Trivial dynamics for a class of analytic homeomorphisms of the plane. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 651-659. doi: 10.3934/dcdsb.2008.10.651 |
[6] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[7] |
Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295 |
[8] |
Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809 |
[9] |
Wouter Castryck, Marco Streng, Damiano Testa. Curves in characteristic $2$ with non-trivial $2$-torsion. Advances in Mathematics of Communications, 2014, 8 (4) : 479-495. doi: 10.3934/amc.2014.8.479 |
[10] |
Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4619-4635. doi: 10.3934/dcds.2016001 |
[11] |
S. Yu. Pilyugin, Kazuhiro Sakai, O. A. Tarakanov. Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 871-882. doi: 10.3934/dcds.2006.16.871 |
[12] |
Fernando Alcalde Cuesta, Françoise Dal'Bo, Matilde Martínez, Alberto Verjovsky. Corrigendum to "Minimality of the horocycle flow on laminations by hyperbolic surfaces with non-trivial topology". Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4585-4586. doi: 10.3934/dcds.2017196 |
[13] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831 |
[14] |
Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005 |
[15] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35 |
[16] |
Vyacheslav Grines, Dmitrii Mints. On decomposition of ambient surfaces admitting $ A $-diffeomorphisms with non-trivial attractors and repellers. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3557-3568. doi: 10.3934/dcds.2022024 |
[17] |
Jana Rodriguez Hertz. Some advances on generic properties of the Oseledets splitting. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4323-4339. doi: 10.3934/dcds.2013.33.4323 |
[18] |
Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683 |
[19] |
Lan Wen. A uniform $C^1$ connecting lemma. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257 |
[20] |
Piotr Kościelniak, Marcin Mazur. On $C^0$ genericity of various shadowing properties. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 523-530. doi: 10.3934/dcds.2005.12.523 |
2020 Impact Factor: 0.848
Tools
Metrics
Other articles
by authors
[Back to Top]