July  2008, 2(3): 471-497. doi: 10.3934/jmd.2008.2.471

Displacement energy of coisotropic submanifolds and Hofer's geometry

1. 

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States

Received  January 2008 Published  April 2008

We prove that the displacement energy of a stable coisotropic submanifold is bounded away from zero if the ambient symplectic manifold is closed, rational and satisfies a mild topological condition.
Citation: Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471
[1]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001

[2]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[3]

Morimichi Kawasaki, Ryuma Orita. Computation of annular capacity by Hamiltonian Floer theory of non-contractible periodic trajectories. Journal of Modern Dynamics, 2017, 11: 313-339. doi: 10.3934/jmd.2017013

[4]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[5]

Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429

[6]

Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243

[7]

Tian Ma, Shouhong Wang. Gravitational Field Equations and Theory of Dark Matter and Dark Energy. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 335-366. doi: 10.3934/dcds.2014.34.335

[8]

Changxing Miao, Jiqiang Zheng. Scattering theory for energy-supercritical Klein-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2073-2094. doi: 10.3934/dcdss.2016085

[9]

Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.

[10]

Catherine Choquet, Ali Sili. Homogenization of a model of displacement with unbounded viscosity. Networks & Heterogeneous Media, 2009, 4 (4) : 649-666. doi: 10.3934/nhm.2009.4.649

[11]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[12]

Chjan C. Lim. Extremal free energy in a simple mean field theory for a coupled Barotropic fluid - rotating sphere system. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 361-386. doi: 10.3934/dcds.2007.19.361

[13]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[14]

Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587

[15]

Alexander Fauck, Will J. Merry, Jagna Wiśniewska. Computing the Rabinowitz Floer homology of tentacular hyperboloids. Journal of Modern Dynamics, 2021, 17: 353-399. doi: 10.3934/jmd.2021013

[16]

Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61

[17]

Peter Albers, Urs Frauenfelder. Spectral invariants in Rabinowitz-Floer homology and global Hamiltonian perturbations. Journal of Modern Dynamics, 2010, 4 (2) : 329-357. doi: 10.3934/jmd.2010.4.329

[18]

Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407

[19]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[20]

Gang Bao, Junshan Lin. Near-field imaging of the surface displacement on an infinite ground plane. Inverse Problems & Imaging, 2013, 7 (2) : 377-396. doi: 10.3934/ipi.2013.7.377

2020 Impact Factor: 0.848

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]